一、边边边(SSS)
学习全等三角形判定法则时,第一条就是边边边。
内容:它们的夹角分别相等的两个三角形全等。
理解:若给出三条线段的长度(满足三角形三边关系),即可确定出的三角形形状,大小。
若给出三条线段长度 AB=c, BC=a, AC=b,确定过程如下:
①先确定一边AB;②分别以AB为圆心,分别做半径为b,a长的圆,交于C点;③最后连接AC,BC。这样三角形的大小,形状就都被确定出来了。
二、边角边(SAS)
内容:两边和它们的夹角分别相等的两个三角形全等。
理解:若确定两条公共端点线段的长度,及它们的夹角,即可确定出的三角形形状,大小。
若给出AB=c BC=a ∠B=α,确定过程如下:
①画∠EAD=α;②在射线AE上截取AC=c,在射线AD上截取AB=c;③连接BC。这样,三角形的.大小形状同样被确定了。
三、角边角(ASA)
内容:两角和他们的夹边分别相等的两个三角形全等。
理解:若给出三角形的两个角的大小和它们的夹边的长度了,即可确定出的三角形形状,大小。
若有AB=c,∠CAB=α,∠CBA=β,确定过程如下:
①先确定一边AB=c;②在AB同旁画∠DAB=α,∠EBA=β,AD,BE交于点C。这样,三角形的大小形状同样被确定了。
四、角角边(AAS)
内容:两边分别相等且其中一组等角的对边相等的两个三角形全等。
理解:若给出三角形的两个角的大小和其中一个角对边的长度了,即可确定出的三角形形状,大小。
若有AB=c,∠CAB=α,∠ACB=β,确定过程如下:
由三角形的内角和为180度可得出剩下一角∠CBA的度数,这样,利用角边角的思路即可确定三角形形状大小。
相关定理:三角形内角和为180度
五、斜边,直角边(HL)
内容:斜边和一条直角边分别相等的两个直角三角形全等。(HL)
理解:若确定一个三角形为直角三角形,同时得到其一个直角边和斜边的长度,即可确定出三角形的形状大小。
若确定三角形为直角三角形,还得到其一直角边和斜边,则可勾股定理得出剩下一边,再通过SSS或SAS即可确定三角形形状大小。
相关定理:勾股定理
1、全等三角形的对应角相等。
2、全等三角形的对应边相等。
3、能够完全重合的顶点叫对应顶点。
4、全等三角形的对应边上的高对应相等。
5、全等三角形的对应角的角平分线相等。
6、全等三角形的对应边上的中线相等。
7、全等三角形面积和周长相等。
8、全等三角形的对应角的三角函数值相等。
查看更多【数学知识点】内容异分母相加减口诀:分母相乘为分母,交叉相乘加减为分子。异分母的分数加减时,先通分,通分后的异分母分数就按照同分母分数加减法的计算方法来算。
升失氧化还原剂,降得还原氧化剂。升失氧,降得还,剂性正相反,氧化还原不可分,得失电子是根本。失电子者被氧化,得电子者被还原。失电子者还原剂,...
因式定理:如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a。反过来,如果f(x)含有因式x-a,那么,f(a)=0。
冒号不算一句话。冒号是行文中常用标点符号之一,是句中符号,通常表示提示语后的停顿或表示提示下文或总括上文。
算术平均值又称均值,是统计学中最基本、最常用的一种平均指标。主要用于未分组的原始数据。设一组数据为X1,X2,...,Xn,简单的算术平均值...
算术平均数和加权平均数的区别:在实际问题中,当各项权相等时,计算平均数就要采用算术平均数;当各项权重不相等时,计算平均数时就要采用加权平均数...
因式分解法解一元二次方程步骤:将方程右边化为0;将方程左边分解为两个一次式的积;令这两个一次式分别为0,得到两个一元一次方程;解这两个一元一...
算术平均数与几何平均数区别如下:1、二者公式的形式不同。2、二者的含义不同。算术平均数主要适用于数值型数据。几何平均数是对各变量值的连乘积开...