基本性质
1.如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
2.如果x>y,y>z;那么x>z;(传递性)
3.如果x>y,而z为任意实数或整式,那么x±z>y±z,即不等式两边同时加或减去同一个整式,不等号方向不变;
4.如果x>y,z>0,那么x*(/)z>y*(/)z ,即不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;
5.如果x>y,z<0,那么x*(/)z<y*(/)z, 即不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变;
6.如果x>y,m>n,那么x+m>y+n;
7.如果x>y>0,m>n>0,那么xm>yn;
8.如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。
或者说,不等式的基本性质的另一种表达方式有:
①对称性;
②传递性;
③加法单调性,即同向不等式可加性;
④乘法单调性;
⑤同向正值不等式可乘性;
⑥正值不等式可乘方;
⑦正值不等式可开方;
⑧倒数法则。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。
1、不等式两边同乘或同除以一个负数;
2、不等式两边同号(即同正或同负)倒数时需变号;
3、二次不等式二次项系数小于0时;
4、含有参数的不等式进行分类讨论系数小于0时。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
查看更多【数学知识点】内容不等式的倒数性质:是如果x大于y大于0,那么x的n次幂大于y的n次幂且n为正数,x的n次幂小于y的n次幂,此时n为负数。一般地,用纯粹的大于...
不等式就是用大于,小于,大于等于,小于等于连接而成的数学式子。不等式的取值口诀为同大取大,同小取小。大大小小没有解,大小小大取中间。
不等式就是用大于,小于,大于等于,小于等于连接而成的数学式子。不等式取值范围口诀为同大取大,同小取小。大大小小没有解,大小小大取中间。“同大...
不等式运算法则为不等式两边相加或相减同一个数或式子,不等号的方向不变。不等式两边相乘或相除同一个正数,不等号的方向不变。不等式两边乘或除以同...
{x|-1
1+X/(1-X)>0,(1-X+X)/(1-X)>0,1/(1-x)>0。所以x<1(真数范围),1>x>0(正数范围)。用符号“>”“<...
方法一:应用分类讨论思想去绝对值(最后结果应取各段的并集);讲绝对值方程进行分类,可以去掉绝对值符号,从而便于计算得到结果。方法二:应用化归...
不等式的基本性质:1.对称性;2.传递性;3.加法单调性,即同向不等式可加性;4.乘法单调性;5.同向正值不等式可乘性;6.正值不等式可乘方...