全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学学习方法 > 正文

二次函数解题思路十大技巧 二次函数知识点

2023-04-27 16:13:17文/陈宇航

二次函数作为初中数学最重要的知识内容之一,不仅是初中生平时的学习重难点,更是中考数学的热点和难点。二次函数的学习,主要集中在二次函数的概念和图像,二次函数的性质,二次函数相关的实际应用问题,二次函数有关的综合问题,二次函数有关的函数与几何综合问题等。

二次函数解题思路十大技巧 二次函数知识点

二次函数解题思路十大技巧

一、理解二次函数的内涵及本质 .

坐标,实际上二次函数的图象就是由无数个这样的点构成的图形 。

二、熟悉几个特殊型二次函数的图象及性质。

1 、通过描点,观察 y=ax2 、 y=ax2 + k 、 y=a ( x + h ) 2 图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式。

2 、理解图象的平移口诀“加上减下,加左减右”。

“y=ax2 → y=a ( x + h ) 2 + k ”“加上减下”是针对 k 而言的,“加左减右”是针对 h 而言的。

总之,如果两个二次函数的“二次项系数”相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般“形式”,应先化为顶点式再平移 。

三、要充分利用抛物线顶点的作用 .

1 、要能准确灵活地求出顶点 。. 形如 y=a ( x + h ) 2 + K →顶点(- h,k ),对于其它形式的二次函数,我们可化为顶点式而求出顶点。

2 、理解顶点、对称轴和函数的最佳值之间的关系。解决问题时,可达到举一反三的效果 。

3 、利用顶点画草图 . 在大多数情况下,我们只需要画出草图来帮助我们分析和解决问题。在这一点上,一个抛物线的一般图片可以画通过结合顶点和开放的方向。

二次函数相关知识点

1、定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,iai还可以决定开口大小,iai越大开口就越小,iai越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

2、二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k [抛物线的顶点p(h,k)]

交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点a(x,0)和b(x,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

3、二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

查看更多【数学学习方法】内容