几何中,在同一平面内,永不相交(也永不重合)的两条直线(line)叫做平行线(parallel lines)。
平行线公理是几何中的重要概念。欧氏几何的平行公理,可以等价的陈述为“过直线外一点有唯一的一条直线和已知直线平行”。而其否定形式“过直线外一点没有和已知直线平行的直线”或“过直线外一点至少有两条直线和已知直线平行”,则可以作为欧氏几何平行公理的替代,而演绎出独立于欧氏几何的非欧几何。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如若a∥b,b∥c,则a∥c。
正平行线的性质与平行线的判定不同,平行线的判定是由角的数量关系来确定线的位置关系,而平行线的性质则是由线的位置关系来确定角的数量关系,平行线的性质与判定是因果倒置的两种命题。对平行线的判定而言,两直线平行是结论,而对平行线的性质而言,两直线平行却是条件。已知两直线平行。由平行线得到角的关系是平行线的性质,包括:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
查看更多【数学知识点】内容1、对于两个向量a(向量a≠向量0),向量b,当有一个实数λ,使向量b=λ向量a(记住向量是有方向的)则向量a‖向量b。反之,当向量a‖向量...
两个向量a,b平行:a=λb(b不是零向量);两个向量垂直:数量积为0,即a•b=0。坐标表示:a=(x1,y1),b=(x2,y2),a/...
两向量平行可得到的结论有:1、方向相同或反;2、x1y2-x2y1=0;3、cos=±1;4、单位向量相等,或互为相反;5、a=λb;6、a...
不对。向量共线即是向量平行。向量共线与向量平行可以不加区别,等同看待。因为高中课本中所说的向量都是自由向量,它的起点可以任意移动,即向量平移...
在平面上两条直线、空间的两个平面以及空间的一条直线与一平面之间没有任何公共点时,称它们平行。平行线在无论多远都不相交。在三线八角中,构成同位...
性质及推论性质:如果向量a∥n,n0是n的单位向量,则a=(a·n0)n0。平行向量,也叫共线向量。是指方向相同或相反的非零向量。零向量与任...
平行:1.向同一方向延伸而处处等距离的,在同一方向上形成一条线而不相交。2.等级相同,没有隶属关系。3.同时进行。平行线:在同一平面内任意延...
重合不是平行。同一平面内直线与直线位置关系分别是:平行、相交、重合。两个或两个以上的几何图形占有同一个空间时,就说它们重合。在平面上两条直线...