在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。
在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
查看更多【数学知识点】内容1、对于两个向量a(向量a≠向量0),向量b,当有一个实数λ,使向量b=λ向量a(记住向量是有方向的)则向量a‖向量b。反之,当向量a‖向量...
两个向量a,b平行:a=λb(b不是零向量);两个向量垂直:数量积为0,即a•b=0。坐标表示:a=(x1,y1),b=(x2,y2),a/...
有向线段有三个要素分别是长度、方向和起点,有向线段是固定的。向量只有两个要素分别是长度和方向,向量是自由的,可平行移动的。一般都会用有向线段...
向量的平方等于向量模的平方。向量a^2=向量a的模×向量a的模×cosθ。θ是两个向量之间的夹角,同一个向量的夹角为0°,所以cosθ=1,...
平行四边形定则解决向量加法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果为公共起点的对角线。平行四边形定则解决向量减法的...
平行四边形定则解决向量加法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果为公共起点的对角线。平行四边形定则解决向量减法的...
向量有两个要素:大小和方向;有向线段有三个要素:大小、方向和起点。自由向量是指只要大小相等、方向相同,起点不同也算同一向量;而有向线段则不同...
向量是有大小和方向的。向量数乘运算的几何意义是:把向量沿着原方向(用正数数乘向量)或反方向(用负数数乘向量)伸长或缩短,特别注意的是0数乘向...