三线合一,即在等腰三角形中(前提)顶角的角平分线,底边的中线,底边的高线,三条线互相重合(前提一定是在等腰三角形中,其它三角形不适用)。以下是等腰三角形的证明方法。
已知:△ABC为等腰三角形,AB=AC,AD为中线。求证:AD⊥BC,∠BAD=∠CAD
在△ABD和△ACD中:
BD=DC(等腰三角形的中线平分对应的边)
AB=AC(等腰三角形的性质)
AD=AD(公共边)
∴△ADB≌△ADC(SSS)
可得∠BAD=∠CAD,∠ADB=∠ADC(全等三角形对应角相等)
∵∠ADB+∠ADC=∠BDC(已证),且∠BDC=180°(平角定义)
∴∠ADB=∠ADC=90°(等量代换)
∴AD⊥BC
得证
查看更多【数学知识点】内容1.如果三角形中有一角的角平分线和它所对边的高重合,那么这个三角形是等腰三角形。2.如果三角形中有一边的中线和这条边上的高重合,那么这个三角...
三线合一,即在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线互相重合。要证明等腰三角形三线合一很简单,例如条件是等腰三角形和底边...
三线合一,即在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线互相重合。例:已知等腰三角形的底边上的中线和高为一条,则可以说这条线...
三线合一,即在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线互相重合(前提一定是在等腰三角形中,其它三角形不适用)。同时,“三线...
三线合一,即在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线互相重合。要证明等腰三角形三线合一很简单,可以先假设一个,然后去证明...
三线合一需要的条件是在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线互相重合。(这个前提一定是在等腰三角形中,其它三角形不适用。...
考试中不能直接使用,会扣一些分,最好是证明一下。如果是已知是中线,又是高线,那就是垂直平分线,根据定理(垂直平分线上的点到角两边的距离相等)...
三线合一可以证明这个三角形是等腰三角形。相关定理如下:1、如果三角形中有一角的角平分线和它所对边的高重合,那么这个三角形是等腰三角形。2、如...