韦达定理说明了一元二次方程中根和系数之间的关系。一元二次方程的根的判别式为Δ= b2-4ac(a,b,c分别为一元二次方程的二次项系数,一次项系数和常数项)。韦达定理与根的判别式的关系更是密不可分。根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。利用韦达定理可以快速求出两方程根的关系,韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。
查看更多【数学知识点】内容一般地,自变量x和因变量y之间存在如下关系:y=ax²+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,...
二次函数顶点坐标公式:y=a(x-h)^2+k,[抛物线的顶点P(h,k)],一般式:y=ax^2+bx+c(a,b,c为常数,a≠0),二...
学好二次函数的方法:二次函数的表达式有一般式、顶点式和交点式,我一定要记清楚,并且知道三种表达式之间的转化关系,尤其是一般式要能熟练地化成顶...
初三二次函数应用题解题技巧:待定系数法型,题设明确给出两个变量间是二次函数关系,和几对变量值,要求求出函数关系式,并进行简单的应用。解答的关...
二次函数图象是抛物线,是轴对称性图形。y=ax的图象是最简单的二次图像,学习也较容易。顶点坐标为(0,0),即原点;对称轴为y轴,开口由a的...
二次函数是初三数学的重点,学生们一定要扎实掌握,小编整理了一些重要的二次函数知识点。
小编为大家整理了二次函数的数学知识点,大家跟随小编一起来学习一下吧。
小编为大家整理了二次函数的数学知识点,大家跟随小编一起来看一下吧。