线性相关的定理
1、向量a1,a2,···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的
线性组合。
2、一个向量线性相关的充分条件是它是一个零向量。
3、两个向量a、b共线的充要条件是a、b线性相关。
4、三个向量a、b、c共面的充要条件是a、b、c线性相关。
5、n+1个n维向量总是线性相关。(个数大于维数必相关)
示例
向量组α1~αs中有一零向量是向量组线性相关的充分条件,不是必要条件。
向量组α1~αs线性相关的充要条件是存在5个不全为0的数k1,k2,k3,k4,k5,使得k1α1+k2α2+k3α3+k4α4+k5α5=0
查看更多【数学定理大全】内容1、对于两个向量a(向量a≠向量0),向量b,当有一个实数λ,使向量b=λ向量a(记住向量是有方向的)则向量a‖向量b。反之,当向量a‖向量...
两个向量a,b平行:a=λb(b不是零向量);两个向量垂直:数量积为0,即a•b=0。坐标表示:a=(x1,y1),b=(x2,y2),a/...
有向线段有三个要素分别是长度、方向和起点,有向线段是固定的。向量只有两个要素分别是长度和方向,向量是自由的,可平行移动的。一般都会用有向线段...
向量的平方等于向量模的平方。向量a^2=向量a的模×向量a的模×cosθ。θ是两个向量之间的夹角,同一个向量的夹角为0°,所以cosθ=1,...
两向量平行可得到的结论有:1、方向相同或反;2、x1y2-x2y1=0;3、cos=±1;4、单位向量相等,或互为相反;5、a=λb;6、a...
平行四边形定则解决向量加法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果为公共起点的对角线。平行四边形定则解决向量减法的...
平行四边形定则解决向量加法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果为公共起点的对角线。平行四边形定则解决向量减法的...
向量有两个要素:大小和方向;有向线段有三个要素:大小、方向和起点。自由向量是指只要大小相等、方向相同,起点不同也算同一向量;而有向线段则不同...