顶点坐标(-b/2a,(4αc-b²)/4α)
二次函数的基本形式为y=ax²+bx+c(a≠0)
a>0时,抛物线开口向上,图象在顶点上方,所以值域y≥(4ac-b²)/4a,即[(4ac-b²)/4a,+∞)。
a<0时,抛物线开口向下,函数的值域是(-∞,(4ac-b²)/4a]
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax²+c(a≠0)。
1.图像法
根据函数图象,观察最高点和最低点的纵坐标。
2.配方法
利用二次函数的配方法求值域,需注意自变量的取值范围。
3.单调性法
利用二次函数的顶点式或对称轴,再根据单调性来求值域。
4.反函数法
若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
5.换元法
包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。
6.判别式法
判别式法即利用二次函数的判别式求值域。
7.复合函数法
设复合函数为f[g(x),]g(x) 为内层函数, 为了求出f的值域,先求出g(x)的值域, 然后把g(x) 看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据 f(x)函数的性质求出其值域;
8.不等式法
基本不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
9.化归法
用函数和他的反函数定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。
10.分离常数法
把分子分母中都有的未知数变成只有分子或者只有分母的情况,由于分子分母中都有未知数与常数的和,所以一般来说我们分拆分子,这样把分子中的未知数变成分母的倍数,然后就只剩下常数除以一个含有未知数的式子。
查看更多【数学公式】内容一般地,自变量x和因变量y之间存在如下关系:y=ax²+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,...
二次函数顶点坐标公式:y=a(x-h)^2+k,[抛物线的顶点P(h,k)],一般式:y=ax^2+bx+c(a,b,c为常数,a≠0),二...
学好二次函数的方法:二次函数的表达式有一般式、顶点式和交点式,我一定要记清楚,并且知道三种表达式之间的转化关系,尤其是一般式要能熟练地化成顶...
初三二次函数应用题解题技巧:待定系数法型,题设明确给出两个变量间是二次函数关系,和几对变量值,要求求出函数关系式,并进行简单的应用。解答的关...
二次函数图象是抛物线,是轴对称性图形。y=ax的图象是最简单的二次图像,学习也较容易。顶点坐标为(0,0),即原点;对称轴为y轴,开口由a的...
二次函数是初三数学的重点,学生们一定要扎实掌握,小编整理了一些重要的二次函数知识点。
小编为大家整理了二次函数的数学知识点,大家跟随小编一起来学习一下吧。
小编为大家整理了二次函数的数学知识点,大家跟随小编一起来看一下吧。