不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;
不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;
不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。 总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
其中,两边的解析式的公共定义域称为不等式的定义域。整式不等式:整式不等式两边都是整式(即未知数不在分母上)。一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-X>0同理:二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。
基本不等式公式为: a+b≥2√(ab)。常用的不等式公式
√((a2+b2)/2)>(a+b)/2≥√ab≥2/(1/a+1/b)√ab≤(a+b)/2
a2+b2>2abab≤(a+b)2/4
lla-Ibl[≤la+b|≤la/+b/(注:la读作a的绝对值)其中,a >0,b>0,当且仅当a=b时,等号成立
不等式(inequality)是用不等号连接的式子。
不等式分为严格不等式与非严格不等式,用纯粹的大于号、小于号连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)连接的不等式称为非严格不等式,或称广义不等式。不等式既可以表达一个命题,也可以表示一个问题。
查看更多【数学知识点】内容代数法:对于一些简单的不等式,可以直接通过代数运算来求解。例如,不等式x+2>3,可以直接通过移项、合并同类项等代数运算得到x>...
不等式的基本性质:1.如果x>y,那么y<x;如果y<x,那么x>y;(对称性)2.如果x>y,y>z;...
不等式的倒数性质:是如果x大于y大于0,那么x的n次幂大于y的n次幂且n为正数,x的n次幂小于y的n次幂,此时n为负数。一般地,用纯粹的大于...
不等式就是用大于,小于,大于等于,小于等于连接而成的数学式子。不等式的取值口诀为同大取大,同小取小。大大小小没有解,大小小大取中间。
不等式就是用大于,小于,大于等于,小于等于连接而成的数学式子。不等式取值范围口诀为同大取大,同小取小。大大小小没有解,大小小大取中间。“同大...
不等式运算法则为不等式两边相加或相减同一个数或式子,不等号的方向不变。不等式两边相乘或相除同一个正数,不等号的方向不变。不等式两边乘或除以同...
{x|-1
1+X/(1-X)>0,(1-X+X)/(1-X)>0,1/(1-x)>0。所以x<1(真数范围),1>x>0(正数范围)。用符号“>”“<...