全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学知识点 > 正文

连续和一致连续的区别 连续的定义是什么

2024-02-11 16:23:11文/宋艳平

区别有范围不同、连续性不同、图像区别。范围不同:连续是局部性质,一般只对单点,而一致连续是整体性质,要对定义域上的某个子集。连续性不同:一致连续的函数必连续,连续的未必一致连续。如果一个函数具有一致连续性则一定具有连续性,而函数具有连续性并不一定具有一致连续性。

连续和一致连续的区别 连续的定义是什么

连续和一致连续的区别

1.连续性是局部性,一般只针对单点,而一致连续是一个整体性,要对定义域上的一个子集。

2.一致性连续函数必连续,连续不一定一致连续。若函数有一致的连续性,则一定是连续的,但函数的连续性不一定是一致的连续性。

3、闭合区间上连续的函数必一致连续,因此在闭合区间中二者是一致的;开区间连续的不一定一致连续,一致连续的函数图像不存在上升或者下降的坡度无限变陡的情况,连续的函数如在(0,1)上连续的函数 y=1/x。

连续的定义是什么

连续是数学函数的一种属性。直观来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。常用的连续性的最根本定义是在拓扑学中的定义,在条目连续函数中会有详细论述。在序理论特别是域理论中,有从这个基础概念中得出的另一种抽象的连续性:斯科特连续性。

一致连续通俗解释是什么

1、一致连续:某一函数f在区间I上有定义,如果对于任意的ε>0,总有δ>0 ,使得在区间I上的任意两点x和x,当满足|x-x|<δ时,|f(x)-f(x)|<ε恒成立,则该函数在区间I上一致连续。

2、对于在闭区间上的连续函数,其在该区间上必一致连续,一致连续的函数必定是连续函数。从上述定义中可以看出,当函数在区间I上一致连续时,无论在区间I上的任何部分,只要自变量的两个数值接近到一定程度,总可以使相应的函数值达到预先指定的接近程度。

查看更多【数学知识点】内容