不定积分的解题技巧:
1、利用不定积分概念性质和基本积分公式求不定积分,这种方法的关键是深刻理解不定积分的概念、基本性质,熟练掌握、牢记不定积分的基本积分公式,当然包括对微分公式的熟练应用。
2、利用换元积分法求不定积分
换元积分法是求不定积分最主要的方法之一,有两类,第一类换元积分法通常称“凑”微分法,实质上是复合函数求导运算的逆运算,通过“凑”微分,使新的积分形式是基本积分公式或扩充的积分公式所具有的形式,从而求得所求积分。
第二类换元积分法是直接寻找代换x=φ(t),φ(t)单调可导,使代换后的新积分容易求出,一般来说寻找代换x=φ(t)不是一件容易的事,这就注定不定积分的计算一般都很困难,只有通过大量练习才能熟练掌握。
3、利用倒代换求不定积分
倒代换是换元积分法的一种,利用倒代换,常可消去被积函数的分母中的变量因子,或者化解被积函数,使不定积分容易求出。
4、有理函数的积分法
用待定系数法化被积函数为部分方式之和,再对每个部分分式逐项积分。
查看更多【数学知识点】内容不定积分计算的是原函数(得出的结果是一个式子),定积分计算的是具体的数值(得出的借给是一个具体的数字)。不定积分是微分的逆运算,而定积分是建...
1/(1+x^4)=1/(2√2)×[(x+√2)/(x^2+√2x+1)-(x-√2)/(x^2-√2x+1)]。不定积分和定积分间的关系...
要求解不定积分∫(1+x)/(x²)dx,我们可以采用分部积分法。∫(1+x)/(x²)dx=(1+x)*(-1/x)-∫(-1/x)*dx...
∫(1+e的x次方)^(1/e)dx=(1+e的x次方)^(1/e)*(ln(e的x次方)-1)+C=(1+e的x次方)^(1/e)*(x-...
1/√(1-x^2)的不定积分是:(1/2)[arcsinx+x√(1-x²)]+C。具体回答如下:令x=sinθ,dx=cosθdθ。所以...
1+sinx分之一的不定积分:∫1/(1+sinx)dx=∫(1-sinx)/[(1+sinx)(1-sinx)]dx=∫(1-sinx)/...
1+x^4=(x^2-√2x+1)(x^2+√2x+1),按有理函数的部分分解的方法,1/(1+x^4)=1/(2√2)×[(x+√2)/(...
cotx平方的不定积分是∫cot²xdx=-cosx/sinx-x+C,C为积分常数。在微积分中,一个函数f的不定积分,或原函数,或反导数,...