全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学知识点 > 正文

8种求定义域的方法 定义域的概念

2023-02-19 08:36:06文/李可欣

8种求定义域的方法:整式的定义域为R。整式可以分为单项式还有多项式,单项式比如y=4x,多项式比如y=4x+1。这时候无论是单项式还是多项式,定义域均为{x|x∈R},就是x可以等于所有实数。分式的定义域是分母不等于0。例如y=1/(x-1),这时候的定义域只需要求让分母不等于即可,即x-1≠0,定义域为{x|x≠1}。

8种求定义域的方法 定义域的概念

8种求定义域的方法

①整式的定义域为R。整式可以分为单项式还有多项式,单项式比如y=4x,多项式比如y=4x+1。这时候无论是单项式还是多项式,定义域均为{x|x∈R},就是x可以等于所有实数。

②分式的定义域是分母不等于0。例如y=1/(x-1),这时候的定义域只需要求让分母不等于即可,即x-1≠0,定义域为{x|x≠1}。

③偶数次方根定义域是被开方数≥0。例如根号下x-3,这时候定义域就是让x-3≥0,求出来定义域为{x|x≥3}。

④奇数次方根定义域是R。例如三次根号下x-3,定义域就是{x|x∈R}。

⑤指数函数定义域为R。比如y=3^x,定义域为{x|x∈R}。

⑥对数函数定义域为真数>0。比如log以3为底(x-1)的对数,让x-1>0,即定义域为{x|x>1}。

⑦幂函数定义域是底数≠0。比如y=(x-1)^2,让x-1≠0,即定义域为{x|x≠1}。

⑧三角函数中正弦余弦定义域为R,正切函数定义域为x≠π/2+kπ。这时候求定义域画个图就可以看出来了,只要记住三角函数图像,即可求出定义域。

定义域的概念

定义一:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。

定义二:A,B是两个非空数集,从集合A到集合B 的一个映射,叫做从集合A到集合B 的一个函数。记作或其中A就叫做定义域。通常,用字母D表示。通常定义域是F(X)中x的取值范围。

1,给定定义域:例如:函数的定义域为给定的集合{1,2}。

2,一般函数的定义域:使函数有意义的一切实数。例如:函数y=1/x的定义域为

。R为任意实数。也可以写做

3,实际问题:根据具体情况求定义域。

4,当然,也会运用到动力物理学中求变量

查看更多【数学知识点】内容