全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学知识点 > 正文

反函数是什么 有哪些性质

2023-01-23 17:31:44文/宋艳平

所谓反函数就是将原函数中自变量与变量调换位置,用原函数的变量表示自变量而形成的函数。存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)。反函数的性质:互为反函数的两个函数的图象关于直线y=x对称。

反函数是什么 有哪些性质

反函数是什么

所谓反函数就是将原函数中自变量与变量调换位置,用原函数的变量表示自变量而形成的函数。存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)。

反函数的性质

(1)互为反函数的两个函数的图象关于直线y=x对称;

(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;

(3)一个函数与它的反函数在相应区间上单调性一致;

(4)一般的偶函数一定不存在反函数(但一种特殊的偶函数存在反函数,例f(x)=a(x=0)它的反函数是f(x)=0(x=a)这是一种极特殊的函数),奇函数不一定存在反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。

(5)一切隐函数具有反函数;

(6)一段连续的函数的单调性在对应区间内具有一致性;

(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。

(8)反函数是相互的

(9)定义域、值域相反对应法则互逆(三反)

(10)原函数一旦确定,反函数即确定(三定)

例:y=2x-1的反函数是y=0.5x+0.5

y=2^x的反函数是y=log2x

例题:求函数3x-2的反函数

解:y=3x-2的定义域为R,值域为R.

由y=3x-2解得x=1/3(y+2)

将x,y互换,则所求y=3x-2的反函数是y=1/3(x+2)

查看更多【数学知识点】内容