所谓反函数就是将原函数中自变量与变量调换位置,用原函数的变量表示自变量而形成的函数。存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)。
(1)互为反函数的两个函数的图象关于直线y=x对称;
(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(3)一个函数与它的反函数在相应区间上单调性一致;
(4)一般的偶函数一定不存在反函数(但一种特殊的偶函数存在反函数,例f(x)=a(x=0)它的反函数是f(x)=0(x=a)这是一种极特殊的函数),奇函数不一定存在反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(5)一切隐函数具有反函数;
(6)一段连续的函数的单调性在对应区间内具有一致性;
(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。
(8)反函数是相互的
(9)定义域、值域相反对应法则互逆(三反)
(10)原函数一旦确定,反函数即确定(三定)
例:y=2x-1的反函数是y=0.5x+0.5
y=2^x的反函数是y=log2x
例题:求函数3x-2的反函数
解:y=3x-2的定义域为R,值域为R.
由y=3x-2解得x=1/3(y+2)
将x,y互换,则所求y=3x-2的反函数是y=1/3(x+2)
查看更多【数学知识点】内容反函数和逆函数是一样的,反函数就是逆函数。一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x...
对,反函数就是关于y=x轴对称的,这是反函数的基本性质。一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g...
关于y=x对称。存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)。一个函数与它的反函数在相应区间上单调性一致;一切隐函数具有...
小编已经为大家找来了求反函数的方法,大家可以借鉴一下,小编还为大家找来了一道例题,供大家巩固知识点。
小编已经为大家找来了求反函数的方法,大家赶快跟随小编一起来了解一下吧。
根据原函数的定义域是反函数的值域,如果我们能从原函数求出值域,那么我们求反函数的定于域就可以直接用了!
是的,单调函数一定存在反函数。单调函数对于整个定义域而言,函数都具有单调性。即值域y一定随着定义域x的增大(或减小)而增大(或减小),每个x...
求反函数的时候首先看这个函数是不是单调函数,如果不是则反函数不存在如果是单调函数,则只要把x和y互换,然后解出y即可。