1、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
2、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
3、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
4、配方法
通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。
配方法用得最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
5、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法,在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有利用拆项添项、求根分解、换元、待定系数等等。
由初中知识的内在逻辑,我们可以总结出一条“万能”的解题思路。
第一步 代数化
不管是代数题目还是几何题目,将未知量用代数式表示。比如应用题中未知数,几何题中的未知边长等。
第二步 寻找相等变化,建立方程关系
利用我们学得的各种等量变化,建立方程。比如完全平方公式、前面说的几何中的相等变化,把相等关系找到后,用我们第一步得到的代数式,建立方程求解。
绝大部分的几何问题以及部分代数问题可以通过这个思路求解、求证。
这个思路简单来说就是几何问题代数化,代数问题方程化。同学们在做题的过程中多多体会,这个解题思路是一个宏观的指导思想,将很大方面有助于我们快速找到解题的正确方法。
查看更多【答题技巧】内容小写e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名。e=2.71828182……是微积分中的两个常用极限之一...
小学三年级数学公式:三角形的面积=底×高÷2,公式S=a×h÷2;正方形的面积=边长×边长公式S=a×a;长方形的面积=长×宽公式S=a×b...
循环小数怎么表示:循环节的表示方法。找到小数部分的循环小数,如果它是一个数字循环,就在这个数字的上面点一个点;如果2个数字循环,就在这两个数...
大于平角(180度)小于周角的角叫做优角。一条射线绕它的端点旋转,当始边和终边在同一条直线上,方向相反时,所构成的角叫平角。1平角=180度...
积化和差公式:积化和差公式有四个,积化和差公式:sinαsinβ=-[cos(α+β)-cos(α-β)];cosαcosβ=[cos(α+...
数学中配方的公式是:把二次项系数化为1,然后陪一次项系数一半的平方。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它...
等比数列前n项求和公式是Sn=n×a1 (q=1) ,等比数列求和公式是求等比数列之和的公式,如果一个数列从第2项起,每一项与它的前一项的比...
二次函数顶点坐标怎么算:先令二次函数等于零,求出二次函数与x轴的两个交点。由二次函数与x轴的交点横坐标可知,二次函数对称轴为直线x=0。由图...