当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a。当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a。
一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一元二次方程中的判别式:Δ=b^2-4ac,应该理解为“如果存在的话,两个自乘后为的数当中任何一个”。在某些数域中,有些数值没有平方根。
1、ax^2+bx+c=0(a≠0,^2表示平方),等式两边都除以a,得x^2+bx/a+c/a=0,
2、移项得x^2+bx/a=-c/a,方程两专边都加上一次项系数b/a的一半的平方,即方程两边都加上b^2/4a^2,
3、配方得x^2+bx/a+b^2/4a^2=b^2/4a^2-c/a,即(x+b/2a)^2=(b^2-4ac)/4a,
4、开根属后得x+b/2a=±[√(b^2-4ac)]/2a(√表示根号),最终可得x=[-b±√(b^2-4ac)]/2a。
ax²+bx+c=(a≠0),当判别式=b²-4ac>=0时。
设两根为x₁,x₂,则根与系数的关系(韦达定理):
1、x₁+x₂=-b/a;
2、x₁x₂=c/a。
一元二次方程有且仅有两个根(重根按重数计算),根的情况由判别式决定。
查看更多【数学知识点】内容一元二次方程的出现,有很久的历史。最早的记录是在公元前两千年左右的巴比伦泥版书中,其中有相当于解二次方程x2-5x+6=0的问题,并指出方程...
“通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。一元二次方程的一般形式是,其中是二次项...
解一元二次方程的四种方法为:直接开平方法、配方法、公式法、因式分解法。形如x²=p或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平...
一元二次方程有四种解法,它们分别是直接开平方法,配方法,公式法和因式分解法。快跟小编一起学习一下吧。
小编整理了有关一元二次方程的知识点,大家跟随小编学习一下吧。
一元二次方程的对称轴是x=-b/2a直线。小编整理了有关一元二次方程的知识,大家跟随小编学习一下吧。
小编为大家整理了有关一元二次方程的知识点,大家跟随小编学习一下吧。
小编整理了有关一元二次方程及公式法的数学知识,大家跟随小编一起来学习一下吧。