全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学知识点 > 正文

有理数和无理数的定义 两者的区别

2023-10-03 09:33:46文/勾子木

有理数的定义:有理数是整数和分数的统称,是整数和分数的集合。无理数的定义:无理数是无限不循环小数,是所有非有理数的实数。无理数是指实数范围内不能表示成两个整数之比的数,比如圆周率。

有理数和无理数的定义 两者的区别

有理数和无理数的区别

有理数和无理数都写成小数形式时,有理数能写成有限小数。所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。

有理数集是整数集的扩张。在有理数集,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。

有理数都包括什么

有理数集包括整数、分数。整数比如-5,-6,0,2等,分数比如八分之四,六分之三等。有理数集用大写黑正体符号Q代表,指的是由所有有理数所构成的集合。有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。

查看更多【数学知识点】内容