无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。
常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。
即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等。无理数是无限不循环小数。如圆周率π等。
无限不循环的小数就是无理数 。换句话说,就是不可以化为整数或者整数比的数
性质1 无理数加(减)无理数既可以是无理数又可以是有理数
性质2 无理数乘(除)无理数既可以是无理数又可以是有理数
性质3 无理数加(减)有理数一定是无理数
性质4 无理数乘(除)一个非0有理数一定是无理数
查看更多【招生问答】内容除不尽的分数是有理数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的...
有理数和无理数的区别:两者概念不同;两者性质不同,有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。无理数的性质是由整数...
实数(R)可以分为有理数(Q)和无理数,其中无理数就是无限不循环小数,有理数就是有限小数和无限循环小数;其中有理数又可以分为整数(Z)和分数...
把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数。
1.不能表示成两个整数之商的数。2.不循环的无限小数,例如:用正方形的一边来度量它的对角线时,所得到的比值2是一个无理数,因为写成小数1.4...
0不是无理数,是有理数。0是介于-1和1之间的整数,是最小的自然数,也是有理数。0既不是正数也不是负数,而是正数和负数的分界点。0没有倒数,...
无理数分为正无理数和负无理数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环...
不是无理数。无限循环小数是有理数,他可以把小数转化为分数;无限不循环小数是无理数,无法转化为分数。从小数点后某一位开始依次不断地重复出现前一...