1、两者概念不同。
有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。
无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
2、两者性质不同。
有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。
无理数的性质是由整数的比率或分数构成的数字。
3、两者范围不同。
有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。
而无理数是指实数范围内,不能表示成两个整数之比的数。
无理数也称为无限不循环小数,常见的无理数主要包括以下几种形式:
1、含π的数,如:2π等
2、根式,如:√5等;
3、函数式,如:lg2,sin1°等;
无理数也可以通过非终止的连续分数来处理。
无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率等。
而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比,如21/7等。
有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。
有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
查看更多【学习经验】内容有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。无理数,也称为无限不循环小数,不能写作两整数...
没有最小的有理数。正整数、零、负整数统称整数;正分数和负数统称分数。整数和分数统称有理数。有理数是“数与代数”领域中的重要内容之一,在现实生...
实数(R)可以分为有理数(Q)和无理数,其中无理数就是无限不循环小数,有理数就是有限小数和无限循环小数;其中有理数又可以分为整数(Z)和分数...
把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数。有理数和无理数的区别1、两者概念不同。有理数是整数和分数的统称,正整数...
这句话不对,有理数为整数(正整数、0、负整数)和分数的统称。正数包括正无理数和正有理数,举例,π就是正无理数,但π也是正数,但不是有理数,同...
对,所有的分数都是有理数。有理数分为整数和分数。数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数...
要看根号下的那个数是不是完全平方数,即它能写成另一个数的平方。如果是一个完全平方数,开根号后就是有理数;反之,是无理数。根号是一个数学符号。...
自然数是包括有理数的。自然数包括0、1、2、3……即零和正整数。有理数包括整数(正整数、零、负整数)和分数。所以自然数都是有理数,自然数集是...