1、两者概念不同。
有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。
无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
2、两者性质不同。
有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。
无理数的性质是由整数的比率或分数构成的数字。
3、两者范围不同。
有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。
而无理数是指实数范围内,不能表示成两个整数之比的数。
常见的有理数类型有如下几种。
1.整数:所有的整数都是有理数。
2.小数:小数分类里的有限小数、无限循环小数都是有理数。
3.分数:因为所有的分数不是与一个有限小数等价,就是与一个无限循环小数等价。即,分数化成小数的结果不是一个有限小数,就是一个无限循环小数。而这两种类型的小数都是有理数,所以,所有的分数都是有理数。
【注】本文中的“分数”指的是分子、分母(分母不为0)都为整数的分数。
值得注意的是,在所有根式中,如果根式开方后的结果能化为上面几种常见有理数的形式中的一种的话,那么这个根式代表的实数也是有理数。如:因为8的立方根等于2,-64的立方根等于-4,所以8和-64的立方根都是有理数。
常见的无理数类型
常见的无理数类型有如下几种。
1.无限不循环小数:如圆周率π、自然对数的底数e等。
2.根式中开方开不尽的数:如2的平方根、5的立方根、7的四次方根等。
【注】两个有理数的和、差、积、商(除数不为0)仍是有理数。两个无理数的和、差、积、商可以是有理数,也可以是无理数。
(1)无理数的和、差、积、商为有理数:如e+(1-e)、e-e、“根号2”的平方、e/e等。
(2)无理数的和差积商为无理数:π+e、π-e、πxe,π/e。
查看更多【数学知识点】内容有理数和无理数的区别:两者概念不同;两者性质不同,有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。无理数的性质是由整数...
没有最小的有理数。正整数、零、负整数统称整数;正分数和负数统称分数。整数和分数统称有理数。有理数是“数与代数”领域中的重要内容之一,在现实生...
实数(R)可以分为有理数(Q)和无理数,其中无理数就是无限不循环小数,有理数就是有限小数和无限循环小数;其中有理数又可以分为整数(Z)和分数...
把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数。有理数和无理数的区别1、两者概念不同。有理数是整数和分数的统称,正整数...
这句话不对,有理数为整数(正整数、0、负整数)和分数的统称。正数包括正无理数和正有理数,举例,π就是正无理数,但π也是正数,但不是有理数,同...
对,所有的分数都是有理数。有理数分为整数和分数。数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数...
要看根号下的那个数是不是完全平方数,即它能写成另一个数的平方。如果是一个完全平方数,开根号后就是有理数;反之,是无理数。根号是一个数学符号。...
自然数是包括有理数的。自然数包括0、1、2、3……即零和正整数。有理数包括整数(正整数、零、负整数)和分数。所以自然数都是有理数,自然数集是...