全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学知识点 > 正文

齐次和非齐次的区别 非齐次线性方程组解如何判别

2022-11-24 14:43:49文/李泓箴

常数项不同:齐次线性方程组的常数项全部为零,非齐次方程组的常数项不全为零。表达式不同:齐次线性方程组表达式 :Ax=0;非齐次方程组程度常数项不全为零: Ax=b。如果系数矩阵的秩小于增广矩阵的秩,方程组无解;如果系数矩阵的秩等于增广矩阵的秩,方程组有解。

齐次和非齐次的区别 非齐次线性方程组解如何判别

齐次和非齐次的区别

1、常数项不同:

齐次线性方程组的常数项全部为零,非齐次方程组的常数项不全为零。

2、表达式不同:

齐次线性方程组表达式 :Ax=0;非齐次方程组程度常数项不全为零: Ax=b。

非齐次线性方程组解的判别

如果系数矩阵的秩小于增广矩阵的秩,方程组无解;如果系数矩阵的秩等于增广矩阵的秩,方程组有解。在有解的情况下,如果系数矩阵的秩等于未知数的个数,非齐次线性方程组有唯一解。

如果系数矩阵的秩小于未知数的个数,非齐次线性方程组有无穷多解,如果有无穷多解,先求所对应齐次线性方程组的基础解系,再求出非齐次线性方程组的一个特解。

由此可知:如果非齐次线性方程组有无穷多解,则其对应的齐次线性方程组一定有非零解,且非齐次线性方程组的全部解(通解)可表示为:对应齐次线性方程组的通解+非齐次线性方程组的特解。

齐次线性方程组求解步骤

(1)对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;

(2)若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;若r(A)=r<n(未知量的个数),则原方程组有非零解,进行以下步骤:

(3)继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;

(4)选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。

查看更多【数学知识点】内容