全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学公式 > 正文

三点共线向量公式

2021-08-01 11:26:19文/董玉莹

(x2-x1)(y3-y1)=(x3-x1)(y2-y1)。三点共线,数学中的一种术语,属几何类问题,指的是三点在同一条直线上。可以设三点为A、B、C,利用向量证明:λAB=AC(其中λ为非零实数)。

三点共线向量公式

三点共线证明方法

三点共线证明方法

方法一:取两点确立一条直线,计算该直线的解析式.代入第三点坐标看是否满足该解析式(直线与方程).

方法二:设三点为A、B、C.利用向量证明:λAB=AC(其中λ为非零实数).

方法三:利用点差法求出AB斜率和AC斜率,相等即三点共线.

方法四:用梅涅劳斯定理.

方法五:利用几何中的公理“如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线”.可知:如果三点同属于两个相交的平面则三点共线。

方法六:运用公(定)理“过直线外一点有且只有一条直线与已知直线平行(垂直)”.其实就是同一法.

方法七:证明其夹角为180°.

方法八:设A B C ,证明△ABC面积为0.

方法九:帕普斯定理.

方法十:利用坐标证明。即证明x1y2=x2y1.

方法十一:位似图形性质.

方法十二:向量法,即向量PB=λ向量PA+μ向量PC,且λ+μ=1,则ABC三点共线

方法十三:张角定理

查看更多【数学公式】内容