全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学知识点 > 正文

充分条件和必要条件的口诀

2021-08-01 09:38:36文/陈宇航

如果A能推出B,那么A就是B的充分条件,其中A为B的子集,即属于A的一定属于B,而属于B的不一定属于A。如果没有A,则必然没有B,如果有A而未必有B,则A就是B的必要条件。

充分条件和必要条件的口诀

充要条件和必要条件的解题方法

1.充分条件与必要条件的两个特征

(1)对称性:若pq的充分条件,则qp的必要条件,即“pq”⇔“qp”;

(2)传递性:若pq的充分(必要)条件,qr的充分(必要)条件,则pr的充分(必要)条件。

注意区分“pq的充分不必要条件”与“p的一个充分不必要条件是q”两者的不同,前者是“pq”而后者是“qp”。

2.从逆否命题,谈等价转换

由于互为逆否命题的两个命题具有相同的真假性,因而,当判断原命题的真假比较困难时,可转化为判断它的逆否命题的真假,这就是常说的“正难则反”。

3.在判断四个命题之间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系。要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应的有了它的“逆命题”“否命题”“逆否命题”;判定命题为真命题时要进行推理,判定命题为假命题时只需举出反例即可。对涉及数学概念的命题的判定要从概念本身入手。

4.充要条件的判断,重在“从定义出发”,利用命题“若p,则q”及其逆命题的真假进行区分,在具体解题中,要注意分清“谁是条件”“谁是结论”,如“AB的什么条件”中,A是条件,B是结论,而“A的什么条件是B”中,A是结论,B是条件,有时还可以通过其逆否命题的真假加以区分。

查看更多【数学知识点】内容