交换律:A∩B=B∩A;A∪B=B∪A
结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C
分配对偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)
对偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C
同一律:A∪∅=A;A∩U=A
求补律:A∪A'=U;A∩A'=∅
对合律:A''=A
等幂律:A∪A=A;A∩A=A
零一律:A∪U=U;A∩∅=∅
吸收律:A∪(A∩B)=A;A∩(A∪B)=A
反演律(德·摩根律):(A∪B)'=A'∩B';(A∩B)'=A'∪B'。文字表述:1.集合A与集合B的并集的补集等于集合A的补集与集合B的补集的交集;2.集合A与集合B的交集的补集等于集合A的补集与集合B的补集的并集。
容斥原理(特殊情况):
card(A∪B)=card(A)+card(B)-card(A∩B)
card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)。
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
查看更多【数学知识点】内容集合符号有:N:非负整数集合或自然数集合{0,1,2,3,…};N*或N+:正整数集合{1,2,3,…};Z:整数集合{…,-1,0,1,…...
不属于。空集也是集合,而集合跟集合之间的关系只能是包含和被包含的关系。也就是“空集包含于任何集合”。只有集合里的元素与集合间的关系才是属于关...
是集合,因为正方形是其公共属性,具有该属性的所有元素构成一个集合。集合中元素的数目称为集合的基数,集合A的基数记作card(A)。当其为有限...
空集就自身一个子集,非空集合至少有它本身和空集两个子集。如果集合A的任意一个元素都是集合B的元素(任意a∈A则a∈B),那么集合A称为集合B...
集合书写格式举例:{x|2
N*是正整数集,所有正整数组成的集合。数学中的N*表示不含0的自然数集。N表示自然数集,如果加了*号,就表示不包含0。n在代数中表示很多,如...
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。集合的表示方法有列举法、描述法、图像法和符号法。
∪并集;∩交集;∈属于;{,…,}诸元素a,b,c…,构成的集合;[,]R中由a到b的闭区间;(,)R中由a到b的开区间;[,)R中由a到b...