(1)数列为等差数列的重要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数)
(2)在等差数列中,当项数为2n (n∈ N+)时,S偶-S奇 = nd,S奇÷S偶=an÷a(n+1);当项数为(2n-1)(n∈ N+)时,S奇—S偶=a(中),S奇-S偶=项数*a(中) ,S奇÷S偶 =n÷(n-1)
(3)若数列为等差数列,则Sn,S2n -Sn ,S3n -S2n,…仍然成等差数列,公差为k^2d
(4)若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则am/bm=S2m-1/T2m-1。
(5)在等差数列中,S = a,S = b (n>m),则S = (a-b)
(6)等差数列中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上
(7)记等差数列的前n项和为S .①若a >0,公差d<0,则当a ≥0且an+1≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且an+1≥0时,S 最小
(8)若等差数列S(p)=q,S(q)=p,则S(p+q)=-(p+q)
1、a(n+1)--a(n)=d (d为常数、n ∈N*)[或a(n)--a(n-1)=d,n ∈N*,n ≥2,d是常数]等价于{a(n)}成等差数列。
2、2a(n+1)=a(n)+a(n+2) [n∈N*] 等价于{a(n)}成等差数列。
3、a(n)=kn+b [k、b为常数,n∈N*] 等价于{a(n)}成等差数列。
4、S(n)=A(n)^2 +B(n) [A、B为常数,A不为0,n ∈N* ]等价于{a(n)}为等差数列。
等差数列是前一项与后一项的差相等,等比数列是前一项与后一项的比相等。
1、等差数列是前一项与后一项的差是常数。如:1,4,7,10,13,16,……
等差数列的通项公式:an=a1+(n-1)d=dn+a1-d
2、等比数列是前一项除以后一项等于一个固定常数q。如:,3,9,27,……
等比数列的通项公式:an=a1·q(n-1)
以上是小编为大家整理的相关知识,希望对大家有所帮助。
查看更多【数学知识点】内容小写e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名。e=2.71828182……是微积分中的两个常用极限之一...
小学三年级数学公式:三角形的面积=底×高÷2,公式S=a×h÷2;正方形的面积=边长×边长公式S=a×a;长方形的面积=长×宽公式S=a×b...
循环小数怎么表示:循环节的表示方法。找到小数部分的循环小数,如果它是一个数字循环,就在这个数字的上面点一个点;如果2个数字循环,就在这两个数...
大于平角(180度)小于周角的角叫做优角。一条射线绕它的端点旋转,当始边和终边在同一条直线上,方向相反时,所构成的角叫平角。1平角=180度...
积化和差公式:积化和差公式有四个,积化和差公式:sinαsinβ=-[cos(α+β)-cos(α-β)];cosαcosβ=[cos(α+...
数学中配方的公式是:把二次项系数化为1,然后陪一次项系数一半的平方。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它...
等比数列前n项求和公式是Sn=n×a1 (q=1) ,等比数列求和公式是求等比数列之和的公式,如果一个数列从第2项起,每一项与它的前一项的比...
二次函数顶点坐标怎么算:先令二次函数等于零,求出二次函数与x轴的两个交点。由二次函数与x轴的交点横坐标可知,二次函数对称轴为直线x=0。由图...