全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学知识点 > 正文

圆内接四边形的性质

2020-04-17 13:39:16文/董玉莹

圆内接四边形是指四个顶点均在同一圆上的四边形。圆内接四边形拥有很多几何性质。本文整理了其性质,欢迎阅读。

圆内接四边形的性质

圆内接四边形性质

以下图所示圆内接四边形ABCD为例,圆心为O,延长AB至E,AC、BD交于P,则:

圆内接四边形性质

1.圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180°

2.圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC

3.圆心角的度数等于所对弧的圆周角的度数的两倍:∠AOB=2∠ACB=2∠ADB

4.同弧所对的圆周角相等:∠ABD=∠ACD

5.圆内接四边形对应三角形相似:△ABP∽△DCP(三个内角对应相等)

6.相交弦定理:AP×CP=BP×DP

7.托勒密定理:AB×CD+AD×CB=AC×BD

四边形性质

(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。

(简述为“平行四边形的两组对边分别相等”)

(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。

(简述为“平行四边形的两组对角分别相等”)

(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补

(简述为“平行四边形的邻角互补”)

(4)夹在两条平行线间的平行线段相等。

(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。

(简述为“平行四边形的对角线互相平分”)

查看更多【数学知识点】内容