1.根据余弦定理,在△ABC中,cosC=(a²+b²-c²)÷2ab。由于a²+b²=c²,故cosC=0;因为0°<∠C<180°,所以∠C=90°。(证明完毕)
2.已知在△ABC中,a²+b²=c²,求证△ABC是直角三角形
证明:做任意一个Rt△A'B'C',使其直角边B'C'=a,A'C'=b,∠C'=90°。设A'B'=c'
在Rt△A'B'C'中,由勾股定理得,A'B‘²=B'C'²+A'C'²=a²+b²=c’²
一∵a²+b²=c²,∴c‘=c
在△ABC和A'B'C'中,∵AB=A'B',BC=B'C',AC=A'C',∴△ABC≌△A'B'C'
∴∠C=∠C'=90°
勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。若c为最长边,且a²+b²=c²,则△ABC是直角三角形。如果a²+b²>c²,则△ABC是锐角三角形。如果a²+b²<c²,则△abc是钝角三角形。
基本公式
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a2+b2=c2。
完全公式
a=m,b=(m^2/k-k)/2,c=(m^2/k+k)/2①
其中m≥3
(1)当m确定为任意一个≥3的奇数时,k={1,m^2的所有小于m的因子}
(2)当m确定为任意一个≥4的偶数时,k={m^2/2的所有小于m的偶数因子}
查看更多【数学定理大全】内容勾股定理是八年级学的。勾股定理又称商高定理、毕达哥拉斯定理,简称“毕氏定理”,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三...
勾股定理是我们初中阶段必须要学习的一个定理,那么什么是勾股定理呢?小编在本文中为大家整理了勾股定理的相关知识点,一起来看看吧!
根据勾股定理,弦是√2。勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直...
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果直角三角形两直角边分别为A和B,斜边为C,那么A²+B²=C²。...
“勾三股四弦五”是勾股定理的一个特别的例子。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜...
3,4,5:勾三股四弦五;5,12,13:5月12记一生(13);6,8,10:连续的偶数;8,15,17:八月十五在一起(17)。勾股定理...
初二上学期第一单元开始学习勾股定理。勾股定理又称商高定理、毕达哥拉斯定理,简称“毕氏定理”,是平面几何中一个基本而重要的定理。勾股定理说明,...
勾股定理:在任何一个平面直角三角形中的两直角边的平方之和一定等于斜边的平方。在△ABC中,∠C=90°,则a²+b²=c²。勾股定理,是几何...