全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学定理大全 > 正文

初中数学定理大集合

2020-01-28 14:44:02文/颜雨

定理是经过受逻辑限制的证明为真的陈述。一般来说,在数学中,只有重要或有趣的陈述才叫定理。接下来给大家分享初中数学的重要定理,建议同学们一定要背诵下来。

初中数学定理大集合

平行四边形性质定理

1、平行四边形的对角相等。

2、平行四边形的对边相等。

3、平行四边形的对角线互相平分。

推论:夹在两条平行线间的平行线段相等。

平行四边形判定定理

1、两组对角分别相等的四边形是平行四边形。

2、两组对边分别相等的四边形是平行四边形。

3、对角线互相平分的四边形是平行四边形。

4、一组对边平行相等的四边形是平行四边形。

菱形定理

菱形性质定理1:菱形的四条边都相等。

菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。

菱形面积=对角线乘积的一半,即S=(a×b)÷2。

菱形判定定理1:四边都相等的四边形是菱形。

菱形判定定理2:对角线互相垂直的平行四边形是菱形。

对称定理

定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。

定理1:关于某条直线对称的两个图形是全等形。

定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

圆的垂径定理

1.垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。

2.弦的垂直平分线经过圆心,并且平分弦作对的两条弧。

3.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

圆的切线定理

1.垂直于过切点的半径;经过半径的外端点,并且垂直于这条半径的直线,是这个圆的切线。

2.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。

圆的周角定理

1.圆周角的度数等于它所对的弧的度数的一半;

2.一条弧所对的圆周角等于它所对的圆心角的一半;

3.“等弧对等角”“等角对等弧”;

4.“直径对直角”“直角对直径”;

5.如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

全等三角形定理

1、SSS(边边边):三边对应相等的三角形是全等三角形。

2、SAS(边角边):两边及其夹角对应相等的三角形是全等三角形。

3、ASA(角边角):两角及其夹边对应相等的三角形全等。

4、AAS(角角边):两角及其一角的对边对应相等的三角形全等。

5、RHS(直角、斜边、边):在一对直角三角形中,斜边及另一条直角边相等。

查看更多【数学定理大全】内容