全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学公式 > 正文

初中三角函数倍角公式及推导

2020-01-25 12:26:40文/陶凯月

倍角公是三角函数中非常实用的一类公式。下面小编为大家整理了初中三角函数倍角公式及推导,供参考。

初中三角函数倍角公式及推导

初中三角函数倍角公式是什么

半倍角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))

二倍角公式

Sin2A=2SinA*CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

三倍角公式

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

tan3α=(3tanα-tan3α)/(1-3tan2α)

四倍角公式

sin4A=-4*(cosA*sinA*(2*sinA^2-1))

cos4A=1+(-8*cosA^2+8*cosA^4)

tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

五倍角公式

sin5A=16sinA^5-20sinA^3+5sinA

cos5A=16cosA^5-20cosA^3+5cosA

tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)

初中倍角公式推导过程

在二角和的公式中令两个角相等(B=A),就得到二倍角公式.

sin(A+B)=sinAcosB+cosAsinB

--->sin2A=2sinAcosA

cos(A+B)=cosAcosB-sinAsinB

--->cos2A=(cosA)^2-(sinA)^2=(1-(sinA)^2-(sinA)^2=1-2(sinA)^2=2(cosA)^2-1.

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

--->tan2A=2tanA/[1-(tanA)^2]

在余弦的二倍角公式中,解方程就得到半角公式.

cosx=1-2[sin(x/2)]^2

--->sin(x/2)=+'-√[(1-cosx)/2]符号由(x/2)的象限决定,下同.

cosx=2[cos(x/2)]^2

--->cos(x/2)=+'-√[1+cosx)/2]

两式的的两边分别相除,得到

tan(x/2)=+'-√[(1-cosx)/(1+cosx)].

又tan(x/2)=sin(x/2)/cos(x/2)

=2[sin(x/2)]^2/[2sin(x/2)cos(x/2)]

=(1-cosx)/sinx

=.........

=sinx/(1+cosx).

查看更多【数学公式】内容