全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学公式 > 正文

初中三角函数和差公式

2021-11-27 16:57:42文/宋则贤

很多同学觉得三角函数会很难,而和差公式是常用的三角函数公式,下面总结了三角函数和差公式,供大家参考。

初中三角函数和差公式

积化和差公式

sinα·cosβ=(1/2)[sin(αβ)sin(α-β)]

cosα·sinβ=(1/2)[sin(αβ)-sin(α-β)]

cosα·cosβ=(1/2)[cos(αβ)cos(α-β)]

sinα·sinβ=-(1/2)[cos(αβ)-cos(α-β)]

sinαsinβ=2sin[(αβ)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(αβ)/2]sin[(α-β)/2]

cosαcosβ=2cos[(αβ)/2]cos[(α-β)/2]

和差化积公式

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

和差化积公式推导过程

首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

所以,sina*cosb=(sin(a+b)+sin(a-b))/2

同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

这样,我们就得到了积化和差的四个公式:

sina*cosb=(sin(a+b)+sin(a-b))/2

cosa*sinb=(sin(a+b)-sin(a-b))/2

cosa*cosb=(cos(a+b)+cos(a-b))/2

sina*sinb=-(cos(a+b)-cos(a-b))/2

好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.

我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

把a,b分别用x,y表示就可以得到和差化积的四个公式:

sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

两角和与差的三角函数公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

查看更多【数学公式】内容