三角函数诱导公式一:任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
三角函数诱导公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
三角函数诱导公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
三角函数诱导公式四:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
三角函数诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
三角函数诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα(以上k∈Z)
一、三角函数诱导公式的作用:可以将任意角的三角函数转化为锐角三角函数。例如:
1、sin390°=sin(360°+30°)=sin30°=1/2.
2、tan225°=tan(180°+45°)=tan45°=1.
3、cos150°=cos(90°+60°)=sin60°=√3/2.
二、三角函数诱导公式的用法:
1、公式一到公式五函数名未改变, 公式六函数名发生改变。
2、公式一到公式五可简记为:函数名不变,符号看象限。即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。
3、对于kπ/2±α(k∈Z)的三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)
三角函数诱导记忆口诀:“奇变偶不变,符号看象限”。
“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
查看更多【数学公式】内容三角函数求导公式:(sinx)' = cosx;(cosx)' = - sinx;(tanx)'=1/(cosx)^2=(secx)^2=1...
1、利用三角函数的有界性,利用三角函数的有界性如|sinx|≤1,|cosx|≤1来求三角函数的最值。2、利用三角函数的增减性,如果f(x)...
三角函数公式不是只能用于直角三角形,三角函数公式对于任意角度,都有其值;相对应的函数值。只是对于直角三角形,三角函数有一个明显的推理工程,便...
三角函数是初中数学的重要内容,同学们一定要学好三角函数。数学上的很多定理,你要把它记下来很难,但你要是把这个定理求证一遍,它就活灵活现地展现...
三角函数是初中数学的重要知识点,我们一定要仔细研究,好好学习。任意角的集合与一个比值的集合变量之间的映射就是三角函数的本质。通常用平面直角坐...
实际上三角函数这块内容还是比较好学的,只要掌握了公式的意义,能够熟练记忆这些公式,在考题中很容易就找到解答方法。希望同学们在日常的学习中要打...
三角函数是初中数学重要知识点,其中包括锐角三角函数定义、三角函数关系、倍角公式、三角和的公式等。我们在学习的过程中要在理解的基础上加以记忆,...
本文中,小编为大家整理了一些初中三角函数入门知识点,一起来看看吧!