全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学公式 > 正文

三角函数和差公式推导过程

2021-10-01 15:32:03文/陶凯月

很多同学对于三角函数会很难,而和差化积公式是常用的三角函数公式,为了方便大家学习,下面小编和整理了三角函数和差公式推导过程,供大家参考。

三角函数和差公式推导过程

和差化积公式推导过程

首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

所以,sina*cosb=(sin(a+b)+sin(a-b))/2

同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

这样,我们就得到了积化和差的四个公式:

sina*cosb=(sin(a+b)+sin(a-b))/2

cosa*sinb=(sin(a+b)-sin(a-b))/2

cosa*cosb=(cos(a+b)+cos(a-b))/2

sina*sinb=-(cos(a+b)-cos(a-b))/2

好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.

我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

把a,b分别用x,y表示就可以得到和差化积的四个公式:

sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

三角函数推导公式集锦

万能公式推导

sin2α=2sinαcosα=2sinαcosα/[cos2(α)+sin2(α)],

(因为cos2(α)+sin2(α)=1)

再把分式上下同除cos^2(α),可得sin2α=2tanα/[1+tan2(α)]

然后用α/2代替α即可。同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

三倍角公式推导

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=[2sinαcos2(α)+cos2(α)sinα-sin3(α)]/[cos3(α)-cosαsin2(α)-2sin2(α)cosα]

上下同除以cos3(α),得:

tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos2(α)+[1-2sin2(α)]sinα=2sinα-2sin3(α)+sinα-2sin3(α)

=3sinα-4sin3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=[2cos2(α)-1]cosα-2cosαsin2(α)

=2cos3(α)-cosα+[2cosα-2cos3(α)]

=4cos3(α)-3cosα

即:sin3α=3sinα-4sin3(α)

cos3α=4cos3(α)-3cosα

查看更多【数学公式】内容