转化思想
转化思想贯穿于本章的始终.例如,利用三角函数定义可以实现边与角的转化,利用互余两角三角函数关系可以实现“正”与“余”的互化;利用同角三角函数关系可以实现“异名”三角函数之间的互化.此外,利用解直角三角形的知识解决实际问题时,首先要把实际问题转化为数学问题.
数形结合思想
本章从概念的引出到公式的推导及直角三角形的解法和应用,无一不体现数形结合的思想方法.例如,在解直角三角形的问题时,常常先画出图形,使已知元素和未知元素更直观,有助于问题的顺利解决.
函数思想
锐角的正弦、余弦、正切、余切都是三角函数,其中都蕴含着函数的思想.例如,任意锐角a与它的正弦值是一一对应的关系.也就是说,对于锐角a任意确定的一个度数,sina都有惟一确定的值与之对应;反之,对于sina在0、1之间任意确定的一个值,锐角a都有惟一确定的一个度数与之对应.
对于公式的记忆,强调一点,就是要关注公式本身的特征,对比理解记忆。
例如:
sin(A+B)=sinAcosB+cosAsinB,我们可以记作“SCCS,左右符号相同”;
cos(A+B)=cosAcosB-sinAsinB,我们就可以记作“CCSS,左右符号相异”。
对于二倍角公式,我们可以在上面公式的基础上,将B换做A即可。
由解析式研究函数的性质
求三角函数的最小正周期,求三角函数在某区间上的最值,求函数的单调区间,判定函数的奇偶性,求对称中心,对称轴方程,以及所给函数与y=sinx的图像之间的变换关系等等。
对于这些问题,一般要利用三角恒变换公式将函数解析式化为y=Asin(ωx+φ)的形式,然后再求相应的结果即可。
在这一过程中,一般要先利用诱导公式、二倍角公式、两角和与差的恒等式等将函数化为asinωx+bcosωx形式,然后再利用辅助角公式,化为y=Asin(ωx+φ)即可。
查看更多【答题技巧】内容孔乙己是贫困潦倒的知识分子。在书中,孔乙己是一个知识分子,满口“之乎者也”,但是他很穷,还窃书,说过“读书人的事,怎么能叫窃,”被人嘲笑,他...
自然界产生氧气的化学方程式:光合作用的反应式为6CO2+12H2O→C6H12O6+6O2+6H2O。包括光反应和暗反应两个过程。需要具备光...
有的高校没有条件,只要学业水平成绩都合格就可以,比如中国科学院大学。有的需要平常学习考试成绩,比如北京外国语大学要求高三第一学期期末成绩在全...
在四则运算中,表示计算顺序,在小括号之后、大括号之前;表示两个整数的最小公倍数;表示取未知数的整数部分;在函数中,表示函数的闭区间;在线性代...
济南开设的最好的职高学校有:济南方信集团职业高中、济南公共交通职业高中。济南市公共交通职业高级中学是由济南市公共交通总公司承办,业务属济南市...
实然:是说事物实际上就是这样的,但不同于现实性(现实性指其有合理性和客观性);应然:就是应该是怎么样的意思,比如说这件事,就应该是那样的结果...
地中海气候一种夏季炎热干燥、冬季温和多雨,雨热不同期的气候类型。地中海气候冬季受西风带控制,锋面气旋频繁活动,气候温和,最冷月的气温在4-1...
碱石灰,又称钠石灰,碱石灰是白色或米黄色粉末,疏松多孔,是氧化钙(CaO,大约75%),水(H₂O,大约20%),氢氧化钠(NaOH,大约3...