全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学公式 > 正文

【三角函数两角和差公式】推导过程及证明

2019-03-17 14:36:13文/李男

在初中数学学习过程中,三角函数是一个重点。那么,三角函数两角和差公式是什么呢?下面和小编一起来看看吧!

【三角函数两角和差公式】推导过程及证明

三角函数两角和差公式是什么

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA)

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

tanA+tanB=sin(A+B)/cosAcosB

三角函数两角和差公式推导过程

证明方法并不唯一,在这里提供一种我认为比较容易理解的方法。如下图所示,从 A 出发作 ∠α 和 ∠β,在 ∠β 的一条射线上取一点 D ,过 D 作 ∠β 的另一条射线的垂线,设垂足为 E。然后过 E 作 ∠α 的另一条射线的垂线,设垂足为 B。再延长 EB,作 CD ⊥ CE。

三角函数两角和差公式推导过程

如果假设 AD = 1,那么在 △AED 中,AE = cosβ,DE = sinβ。先来证明第 1 个公式:在 △CDE 中,CE = sinβ cosα;在 △ABE 中,BE = cosβ sinα;在 △ADF 中,DF = sin ( α+β )。因为 DF = BC = BE + CE,所以 sin ( α+β ) = cosβ sinα + sinβ cosα。

查看更多【数学公式】内容