全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学知识点 > 正文

奇函数和偶函数的性质和区别

2023-12-30 17:05:43文/勾子木

奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。偶函数:关于Y轴对称,对于互为相反数的自变量,其函数值不变。

奇函数和偶函数的性质和区别

奇函数和偶函数的区别

1、奇函数关于原点对称而偶函数关于Y轴对称;

2、奇函数对任意定义域内的x都满足f(-x)=-f(x);偶函数对任意定义域内的x都满足f(-x)=f(x)。

3、奇函数在对称区间具有相同的单调性而偶函数具有相反的单调性。

奇函数的性质

奇函数:关于原点对称,对于互为相反数的自变量,其函数值也互为相反数。自变量a,-a,该自变量互为相反数即:a+(-a)=0,其对应的函数值f(a),f(-a),也互为相反数,即:f(a)+f(-a)=0,或写成f(a)=-f(-a);具体数字例子:f(3)+f(-3)=0。

奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。

偶函数的性质

偶函数:关于Y轴对称,对于互为相反数的自变量,其函数值不变。如自变量a,-a,该自变量互为相反数即:a+(-a)=0,其对应的函数值f(a),f(-a)相等,即:f(a)=f(-a),具体数字例子:f(3)=f(-3)。

偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能代表其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。

查看更多【数学知识点】内容