运用公式法
我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。
于是有:a^2-b^2=(a+b)(a-b),a^2+2ab+b^2=(a+b)^2,a^2-2ab+b^2=(a-b)^2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
平方差公式
1、式子:a^2-b^2=(a+b)(a-b)
2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。
1、如果多项式的首项为负,应先提取负号;这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。
2、分解因式的结果必须是以乘积的形式表示。
3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止。
5、结果的多项式首项一般为正。 在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子。
查看更多【数学知识点】内容十字相乘法是因式分解中十四种方法之一。十字左边相乘的积为二次项,右边相乘的积为常数项,交叉相乘再相加等于一次项。原理就是运用二项式乘法的逆运...
因式分解是名称,分解因式是一个过程,而把乘积的形式转化为多项式叫整式乘法。这两个短语其实在数学领域没是后面太大的区别,要是从语法角度讲,还是...
(a+b)(a-b)因式分解,(a+b)×(a-b)=a×(a-b)+b×(a-b)=(a-ab)+(ab-b)=a-b。把一个多项式在一个...
1+x的奇数次方是可以分解的,但是偶数次方无法分解。1+x^3=(1+x)(1-x+x²)。1+x^4无法分解因式。1+x^n,当n是奇数时...
把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解。平方差公式a²-b²=(a+b)(a-b)、完全平方公式...
因式分解的方法有:提公因式法,如果一个多项式的各项都含有公因式,就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。应用公式法,由...
因式分解的方法有:提公因式法,如果一个多项式的各项都含有公因式,就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。应用公式法,由...
a^n+b^n因式分解具体回答如下:a^n+b^n。=(a-b)[a^(n-1)+a^(n-2)*b+...+a*b^(n-2)+b^(n-...