全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学知识点 > 正文

子集和真子集的区别 什么是真子集

2023-10-26 09:35:31文/陈宇航

真子集是指如果集合A是集合B的子集,并且集合B中至少有一个元素不属于A,则集合A是集合B的真子集。子集是一个数学概念,指某个集合中一部分的集合,亦称部分集合。若A和B都为集合,且A中所有元素都是B中的元素,则A是B的子集或称A包含于B。

子集和真子集的区别 什么是真子集

子集和真子集的区别

子集

(1)子集是一个数学概念,指某个集合中一部分的集合,亦称部分集合。若A和B都为集合,且A中所有元素都是B中的元素,则A是B的子集或称A包含于B。

(2)对于空集,我们规定A,即空集是任何集合的子集。

真子集

对于集合A与B,x∈A有x∈B,则AB。可知任一集合A是自身的子集,空集是任一集合的子集。

如果集合AB,存在元素x∈B,且元素x不属于集合A,我们称集合A与集合B有真包含关系,集合A是集合B的真子集(proper subset)。记作AB(或BA),读作“A真包含于B”(或“B真包含A”)。

真子集是什么意思

如果集合A⊆B,存在元素x∈B,且元素x不属于集合A,我们称集合A与集合B有真包含关系,集合A是集合B的真子集(proper subset)。记作A⫋B(或B⫌A),读作“A真包含于B”(或“B真包含A”)。

即:对于集合A与B,∀x∈A有x∈B,且∃x∈B且x∉A,则A⫋B。空集是任何非空集合的真子集。

非空真子集:如果集合A⫋B,且集合A≠∅,集合A是集合B的非空真子集(nonvoid proper subset)。

查看更多【数学知识点】内容