全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学知识点 > 正文

初三二次函数知识点归纳 二次函数学习技巧

2023-08-01 11:16:05文/勾子木

初三二次函数知识点:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数。

初三二次函数知识点归纳 二次函数学习技巧

初三二次函数知识点归纳

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax²+bx+c(a,b,c为常数,a≠0)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax²;+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)²;+k[抛物线的顶点P(h,k)]

交点式:y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2ak=(4ac-b²;)/4ax1,x2=(-b±√b²;-4ac)/2a

III.二次函数的图象

在平面直角坐标系中作出二次函数y=x??的图象,

可以看出,二次函数的图象是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线

x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P[-b/2a,(4ac-b²;)/4a]。

当-b/2a=0时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ=b²-4ac>0时,抛物线与x轴有2个交点。

Δ=b²-4ac=0时,抛物线与x轴有1个交点。

Δ=b²-4ac<0时,抛物线与x轴没有交点。

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax²;+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax²;+bx+c=0

此时,函数图象与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

二次函数学习技巧

1.理解二次函数概念、性质、含画二次函数的图像。

2.能确定抛物线的开口方向,顶点坐标,对称轴方程,以及抛物线与坐标轴的交点坐标。

3.含根据不同条件确定二次函数的解析式。

4.灵活运用函数思想,数形结合思想解决问题。

查看更多【数学知识点】内容