甘肃武威数学-2018年初中毕业、高中招生考试试卷
武威市2018年初中毕业、高中招生考试
数学试题参考答案及评分标准
一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
答案 | B | D | C | B | A | A | C | D | B | A |
填空题:本大题共8小题,每小题3分,共24分.
11. 0 12. 13.8 14.108
15. 7 16. 17. 18.1
三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理,答案正确均可得分)
19.(4分)
解:原式= 2分
= ﹒ 3分
. 4分
20.(4分)
解:(1)如图,作出角平分线CO; 1分
作出⊙O. 3分
(2)AC与⊙O相切. 4分
21. (6分)
解:设合伙买鸡者有x人,鸡价为y文钱. 1分
根据题意可得方程组, 3分
解得 . 5分
答:合伙买鸡者有9人,鸡价为70文钱. 6分
22. (6分)
解:如图,过点C作CD⊥AB, 垂足为D. 1分
在Rt△ADC和Rt△BCD中,
∵ ∠CAB=30°,∠CBA=45°,AC=640.
∴ CD=320,AD=,
∴ BD =CD=320,BC=, 2分
∴ AC+BC=, 3分
∴ AB=AD+BD=, 4分
∴ 1088-864=224(公里). 5分
答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里. 6分
23.(6分)
解:(1)米粒落在阴影部分的概率为; 2分
(2)列表:
第二次
| A | B | C | D | E | F |
A |
| (A,B) | (A,C) | (A,D) | (A,E) | (A,F) |
B | (B , A) |
| (B,C) | (B,D) | (B,E) | (B,F) |
C | (C , A) | (C,B) |
| (C,D) | (C,E) | (C,F) |
D | (D , A) | (D,B) | (D,C) |
| (D,E) | (D,F) |
E | (E , A) | (E,B) | (E,C) | (E,D) |
| (E,F) |
F | (F , A) | (F , B) | (F , C) | (F , D) | (F,E) |
|
4分
共有30种等可能的情况,其中图案是轴对称图形的有10种,
故图案是轴对称图形的概率为; 6分
(注:画树状图或列表法正确均可得分)
四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理,答案正确均可得分)
24.(7分)
(1)117; 2分
(2)如图
4分
(3)B; 5分
(4) 7分
25.(7分)
解:(1)把点A(-1,a)代入,得,
∴ A(-1,3)
把A(-1,3)代入反比例函数,得,
∴ 反比例函数的表达式为. 3分
(2)联立两个函数表达式得 , 解得 ,.
∴ 点B的坐标为B(-3,1).
当时,得.
∴ 点C(-4,0). 4分
设点P的坐标为(,0).
∵ ,
∴ .
即 ,
解得 ,. 6分
∴ 点P(-6,0)或(-2,0). 7分
26.(8分)
解:(1)∵ 点F,H分别是BC,CE的中点,
∴ FH∥BE,. 1分
∴ . 2分
又 ∵ 点G是BE的中点,
∴ . 3分
又 ∵,
∴ △BGF ≌ △FHC. 4分
(2)当四边形EGFH是正方形时,可知EF⊥GH且EF=GH, 5分
∵ 在△BEC中,点G,H分别是BE,EC的中点,
∴ 且GH∥BC,
∴ EF⊥BC. 6分
又∵AD∥BC, AB⊥BC,
∴ ,
∴ . 8分
27.(8分)
(1)证明:连接OE,BE.
∵ DE=EF, ∴ =, ∴ ∠OBE=∠DBE.
∵ OE=OB, ∴∠OEB=∠OBE,
∴ ∠OEB =∠DBE, ∴ OE∥BC. 3分
∵ ⊙O与边AC相切于点E, ∴ OE⊥AC.
∴ BC⊥AC, ∴ ∠C=90°. 4分
(2)解:在△ABC中,∠C=90°,BC=3 ,,
∴ AB=5. 5分
设⊙O的半径为r,则AO=5-r,
在Rt △AOE中,,
∴ . 7分
∴. 8分
28.(10分)
解:(1)将点B和点C的坐标代入,
得 , 解得 ,.
∴ 该二次函数的表达式为. 3分
(2)若四边形POP′C是菱形,则点P在线段CO的垂直平分线上; 4分
如图,连接PP′,则PE⊥CO,垂足为E,
∵ C(0,3),
∴ E(0,),
∴ 点P的纵坐标等于.
∴ ,
解得,(不合题意,舍去), 6分
∴ 点P的坐标为(,). 7分
(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,
设P(m,),设直线BC的表达式为,
则 , 解得 .
∴ 直线BC的表达式为 .
∴ Q点的坐标为(m,),
∴ .
当 ,
解得 ,
∴ AO=1,AB=4,
∴ S四边形ABPC =S△ABC+S△CPQ+S△BPQ
=
=
=. 9分
当 时,四边形ABPC的面积最大.
此时P点的坐标为,四边形ABPC的面积的最大值为. 10分