全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 长春中考 > 长春中考试题 > 长春数学试题 > 正文

2018长春中考数学模拟压轴真题【精编Word版含答案解析】

2018-06-10 17:02:51文/张雪娇

 学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!

2018长春中考数学模拟压轴真题【精编Word版含答案解析】

由于格式问题,部分试题会存在乱码的现象,请考生点击全屏查看!

一、选择题(本大题共8小题,每小题3分,共24分)

1.(3分)的相反数是(  )

A.              B.              C.﹣4              D.4

2.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是(  )

A.              B.              C.              D.

3.(3分)下列运算正确的是(  )

A.a•a2=a2              B.(a2)3=a6              C.a2+a3=a6              D.a6÷a2=a3

4.(3分)不等式组的解集在数轴上表示正确的是(  )

A.              B.              C.              D.

5.(3分)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是(  )

A.6              B.8              C.10              D.12

6.(3分)如图,在Rt△ABC中,∠C=90°,AC<BC.斜边AB的垂直平分线交边BC于点D.若BD=5,CD=3,则△ACD的周长是(  )

A.7              B.8              C.12              D.13

7.(3分)如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是(  )

A.130°              B.120°              C.110°              D.100°

8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是(  )

A.              B.              C.              D.

 

二、填空题(本大题共6小题,每小题3分,共18分)

9.(3分)化简:=     .

10.(3分)某种商品n千克的售价是m元,则这种商品8千克的售价是     元.

11.(3分)不解方程,判断方程2x2+3x﹣2=0的根的情况是     .

12.(3分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于A、B两点,点P(1,m)在△AOB的形内(不包含边界),则m的值可能是     .(填一个即可)

13.(3分)如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是     度.

14.(3分)如图,在平面直角坐标系中,抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的一个交点为A.已知点A的横坐标为1,过点A作x轴的平行线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则的值为     .

 

三、解答题(本大题共10小题,共78分)

15.(6分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=

16.(6分)如图是一副扑克牌的四张牌,将它们正面向下洗均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.

17.(6分)为了解九年级课业负担情况,某校随机抽取80名九年级学生进行问卷调查,在整理并汇总这80张有效问卷的数据时发现,每天完成课外作业时间,最长不超过180分钟,最短不少于60分钟,并将调查结果绘制成如图所示的频数分布直方图.

(1)被调查的80名学生每天完成课外作业时间的中位数在     组(填时间范围).

(2)该校九年级共有800名学生,估计大约有     名学生每天完成课外作业时间在120分钟以上(包括120分钟)

18.(7分)如图,在▱ABCD中,O为AC的中点,过点O作EF⊥AC与边AD、BC分别相交于点E、F,求证:四边形AECF是菱形.

19.(7分)某环卫清洁队承担着9600米长的街道清雪任务,在清雪1600米后,为了减少对交通的影响,决定租用清雪机清雪,结果共用了4小时就完成了清雪任务.已知使用清雪机后的工作效率是原来的5倍,求原来每小时清雪多少米?

20.(7分)如图,小区内斜向马路的大树与地面的夹角∠ABC为55°,高为3.2米的大型客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)

【参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42】

21.(8分)【发现问题】如图①,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点,求证:△DFM≌△MGE.

【拓展探究】如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,△DFM的面积为a,直接写出△MGE的面积.

22.(9分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.

(1)直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.

(2)求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.

(3)求机场大巴与货车相遇地到机场C的路程.

23.(10分)如图,在△ABC中,AD⊥BC于点D,BD=3cm,DC=8cm,AD=4cm,动点P从点B出发,沿折线BA﹣AC向终点C做匀速运动,点P在线段BA上的运动速度是5cm/s;在线段AC上的运动速度是cm/s,当点P不与点B、C重合时,过点P作PQ⊥BC于点Q,将△PBQ绕PQ的中点旋转180°得到△QB′P,设四边形PBQB′与△ABD重叠部分图形的面积为y(cm2),点P的运动时间为x(s).

(1)用含x的代数式表示线段AP的长.

(2)当点P在线段BA上运动时,求y与x之间的函数关系式.

(3)当经过点B′和△ADC一个顶点的直线平分△ADC的面积时,直接写出x的值.

24.(12分)如图①,在平面直角坐标系中,抛物线C1:y=(x+k)(x﹣3)交x轴于点A、B(A在B的右侧),交y轴于点C,横坐标为2k的点P在抛物线C1上,连结PA、PC、AC,设△ACP的面积为S.

(1)求直线AC对应的函数表达式(用含k的式子表示).

(2)当点P在直线AC的下方时,求S取得最大值时抛物线C1所对应的函数表达式.

(3)当k取不同的值时,直线AC、抛物线C1和点P、点B都随k的变化而变化,但点P始终在不变的抛物线(虚线)C2:y=ax2+bx上,求抛物线C2所对应的函数表达式.

(4)如图②,当点P在直线AC的下方时,过点P作x轴的平行线交C2于点F,过点F作y轴的平行线交C1于点E,当△PEF与△ACO的相似比为时,直接写出k的值.

 2018长春中考数学模拟压轴真题参考答案与试题解析

 

一、选择题(本大题共8小题,每小题3分,共24分)

1.(3分)的相反数是(  )

A.              B.              C.﹣4              D.4

【解答】解:的相反数是

故选:B.

 

2.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是(  )

A.              B.              C.              D.

【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,

故选:C.

 

3.(3分)下列运算正确的是(  )

A.a•a2=a2              B.(a2)3=a6              C.a2+a3=a6              D.a6÷a2=a3

【解答】解:A、原式=a3,错误;

B、原式=a6,正确;

C、原式不能合并,错误;

D、原式=a4,错误,

故选:B.

 

4.(3分)不等式组的解集在数轴上表示正确的是(  )

A.              B.              C.              D.

【解答】解:

由①得,x>﹣1;

由②得,x≤2,

故此不等式组的解集为:﹣1<x≤2.

在数轴上表示为:

故选:A.

 

5.(3分)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是(  )

A.6              B.8              C.10              D.12

【解答】解:如图,过点D作DE⊥AB于E,

∵AB=8,CD=2,

∵AD是∠BAC的角平分线,∠C=90°,

∴DE=CD=2,

∴△ABD的面积=AB•DE=×8×2=8.

故选:B.

 

6.(3分)如图,在Rt△ABC中,∠C=90°,AC<BC.斜边AB的垂直平分线交边BC于点D.若BD=5,CD=3,则△ACD的周长是(  )

A.7              B.8              C.12              D.13

【解答】解:∵DE是AB的垂直平分线,

∴AD=BD=5,又CD=3

由勾股定理得,AC==4,

∴△ACD的周长=AC+CD+AD=12,

故选:C. 

7.(3分)如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是(  )

A.130°              B.120°              C.110°              D.100°

【解答】解:∵∠B+∠D=180°,

∴∠D=180°﹣130°=50°,

∴∠AOC=2∠D=100°.

故选:D.

 

8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是(  )

A.              B.              C.              D.

【解答】解:∵OB=1,AB⊥OB,点A在函数y=﹣(x<0)的图象上,

∴当x=﹣1时,y=2,

∴A(﹣1,2).

∵此矩形向右平移3个单位长度到A1B1O1C1的位置,

∴B1(2,0),

∴A1(2,2).

∵点A1在函数y=(x>0)的图象上,

∴k=4,

∴反比例函数的解析式为y=,O1(3,0),

∵C1O1⊥x轴,

∴当x=3时,y=

∴P(3,).

故选:C.

二、填空题(本大题共6小题,每小题3分,共18分)

9.(3分)化简:=  .

【解答】解:原式=2

=

故答案为:

 

10.(3分)某种商品n千克的售价是m元,则这种商品8千克的售价是  元.

【解答】解:根据题意,得:

故答案为:

 

11.(3分)不解方程,判断方程2x2+3x﹣2=0的根的情况是 有两个不相等的实数根 .

【解答】解:∵a=2,b=3,c=﹣2,

∴△=b2﹣4ac=9+16=25>0,

∴一元二次方程有两个不相等的实数根.

故答案为:有两个不相等的实数根.

 

12.(3分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于A、B两点,点P(1,m)在△AOB的形内(不包含边界),则m的值可能是 1 .(填一个即可)

【解答】解:∵直线y=﹣x+2分别交x轴、y轴于A、B两点,

∴A(4,0),B(0,2),

∴当点P在直线y=﹣x+2上时,﹣+2=m,解得m=

∵点P(1,m)在△AOB的形内,

∴0<m<

∴m的值可以是1.

故答案为:1.

 

13.(3分)如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是 80 度.

【解答】解:由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.

∵AB=AB1,∠BAB1=100°,

∴∠B=∠BB1A=40°.

∴∠AB1C1=40°.

∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.

故答案为:80.

 

14.(3分)如图,在平面直角坐标系中,抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的一个交点为A.已知点A的横坐标为1,过点A作x轴的平行线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则的值为  .

【解答】解:抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的对称轴分别为直线x=3与直线x=﹣2,

∵点A的横坐标为1,

∴点C的横坐标为5,点B横坐标为﹣5,

∴AC=4,AB=6,

==

故答案为:

 

三、解答题(本大题共10小题,共78分)

15.(6分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=

【解答】解:原式=2b2+a2﹣b2﹣(a2+b2﹣2ab

=2b2+a2﹣b2﹣a2﹣b2+2ab

=2ab,

当a=﹣3,b=时,原式=2×(﹣3)×=﹣3.

 

16.(6分)如图是一副扑克牌的四张牌,将它们正面向下洗均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.

【解答】解:画树状图得:

∵共有12种等可能的结果,牌面上的数字都是偶数的有2种情况,

∴P(牌面上数字都是偶数)==

 

17.(6分)为了解九年级课业负担情况,某校随机抽取80名九年级学生进行问卷调查,在整理并汇总这80张有效问卷的数据时发现,每天完成课外作业时间,最长不超过180分钟,最短不少于60分钟,并将调查结果绘制成如图所示的频数分布直方图.

(1)被调查的80名学生每天完成课外作业时间的中位数在 120~150 组(填时间范围).

(2)该校九年级共有800名学生,估计大约有 600 名学生每天完成课外作业时间在120分钟以上(包括120分钟)

【解答】解:(1)被调查的80名学生每天完成课外作业时间的中位数在120~150.

故答案为120~150.

 

(2)校九年级共有800名学生,每天完成课外作业时间在120分钟以上的学生有800×=600,

故答案为600.

 

18.(7分)如图,在▱ABCD中,O为AC的中点,过点O作EF⊥AC与边AD、BC分别相交于点E、F,求证:四边形AECF是菱形.

【解答】证明:∵四边形ABCD是平行四边形,

∴BC∥AD,

∴AE∥CF,

∴∠OAE=∠OCF,

∵点O是AC的中点,

∴OA=OC,

在△AOE和△COF中,

∴△AOE≌△COF(ASA),

∴AE=CF,

∵AE∥CF,

∴四边形AECF是平行四边形,

∵EF与AC垂直,

∴四边形AECF是菱形.

 

19.(7分)某环卫清洁队承担着9600米长的街道清雪任务,在清雪1600米后,为了减少对交通的影响,决定租用清雪机清雪,结果共用了4小时就完成了清雪任务.已知使用清雪机后的工作效率是原来的5倍,求原来每小时清雪多少米?

【解答】解:设原来每小时清雪x米,根据题意得:

+=4,

解得:x=800,

经检验:x=800是分式方程的解.

答:原来每小时清雪800米.

 

20.(7分)如图,小区内斜向马路的大树与地面的夹角∠ABC为55°,高为3.2米的大型客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)

【参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42】

【解答】解:如图:在AB上取点D,过点D作DE⊥BC于点E,则DE=3.5,

∵tan55°==1.42,

∴BE==≈2.3(米),

答:至少要离此树的根部B点2.3米才能安全通过.

 

21.(8分)【发现问题】如图①,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点,求证:△DFM≌△MGE.

【拓展探究】如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,△DFM的面积为a,直接写出△MGE的面积.

【解答】【发现问题】证明:∵△ADB是等腰直角三角形,F为斜边AB的中点,

∴∠DFB=90°,DF=FA;

∵△ACE是等腰直角三角形,G为斜边AC的中点,

∴∠EGC=90°,AG=GE,

∵点F、M、G分别为AB、BC、AC边的中点,

∴FM∥AC,MG∥AB,

∴四边形AFMG是平行四边形,

∴FM=AG,MG=FA,∠BFM=∠BAC,∠BAC=∠MGC,

∴DF=MG,∠DFM=∠MGE,FM=GE,

在△DFM与△MGE中,

∴△DFM≌△MGE.                 

 

【拓展探究】∵点F、M、G分别为AB、BC、AC边的中点,

∴FM∥AC,MG∥AB,FM=AC=AG,MG=AB=AF,∠MGC=∠BAC=∠BFM,

∴∠DFM=∠MGE,

∵∠1+∠2=90°,∠2+∠3=90°,

∴∠1=∠3,

∴tan∠1=tan∠3,

=

=

∵∠DFM=∠MGE,

∴△DFM∽△MGE,

=()2,

在Rt△ADF中,DF===4,

=()2=

∵△DFM的面积为a,

∴S△MGE=a.

 

22.(9分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.

(1)直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.

(2)求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.

(3)求机场大巴与货车相遇地到机场C的路程.

【解答】解:(1)60+20=80(km),

80÷20×=(h).

∴连接A、B两市公路的路程为80km,货车由B市到达A市所需时间为h.

(2)设所求函数表达式为y=kx+b(k≠0),

将点(0,60)、(,0)代入y=kx+b,

得:,解得:

∴机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式为y=﹣80x+60(0≤x≤).

(3)设线段ED对应的函数表达式为y=mx+n(m≠0),

将点(,0)、(,60)代入y=mx+n,

得:,解得:

∴线段ED对应的函数表达式为y=60x﹣20(≤x≤).

解方程组,得

∴机场大巴与货车相遇地到机场C的路程为km.

 

23.(10分)如图,在△ABC中,AD⊥BC于点D,BD=3cm,DC=8cm,AD=4cm,动点P从点B出发,沿折线BA﹣AC向终点C做匀速运动,点P在线段BA上的运动速度是5cm/s;在线段AC上的运动速度是cm/s,当点P不与点B、C重合时,过点P作PQ⊥BC于点Q,将△PBQ绕PQ的中点旋转180°得到△QB′P,设四边形PBQB′与△ABD重叠部分图形的面积为y(cm2),点P的运动时间为x(s).

(1)用含x的代数式表示线段AP的长.

(2)当点P在线段BA上运动时,求y与x之间的函数关系式.

(3)当经过点B′和△ADC一个顶点的直线平分△ADC的面积时,直接写出x的值.

【解答】解:(1)当0<x≤1时,PA=5x,

当1<x<5时,PA=5(x﹣1)=5x﹣5.

 

(2)如图1中,当0<x≤时,重叠部分是四边形PBQB′.

∵PQ⊥BC,AD⊥BC,

∴PQ∥AD,

==

==

∴PQ=4x,BQ=3x,

由题意四边形PBQB′是平行四边形,

∴y=BQ•PQ=12x2,

如图2中,当<x≤1,重叠部分是五边形PBQMN.

∵PN∥BD,

=

∴PN=3(1﹣x),B′N=3x﹣3(1﹣x)=6x﹣3,易知MN=4(2x﹣1),

∴y=12x2﹣•(6x﹣3)•4(2x﹣1)=﹣12x2+24x﹣6.

综上所述,y=

 

(3)如图3中,当PA=B时,PB′是△ABD是中位线.

∴AB′=DB′,此时CB′平分△ADC的面积,此时x=

如图4中,设AB′的延长线交BC于G.

当DG=GC=4时,AB′平分△ADC的面积,

∵PB′∥BG,

=

=

∴x=

 

如图5中,连接DB′交AC于N,延长B′P交AD于T,作NM⊥PB′于M,NH⊥AD于H.

由题意PA=(x﹣1),AT=x﹣1,TP=2(x﹣1),PB′=BQ=3+2(x﹣1)=2x+1,

当AN=CN时,DB′平分△ADC的面积,

∴可得AH=HD=2,HN=TM=2,

∴B′M=TB′﹣MT=2(x﹣1)+2x+1﹣4=4x﹣5,MN=2﹣(x﹣1)=3﹣x,TD=4﹣(x﹣1)=5﹣x,

∵MN∥TD,

=

=

∴x=

综上所述,x=s或s或s时,经过点B′和△ADC一个顶点的直线平分△ADC的面积.

 

24.(12分)如图①,在平面直角坐标系中,抛物线C1:y=(x+k)(x﹣3)交x轴于点A、B(A在B的右侧),交y轴于点C,横坐标为2k的点P在抛物线C1上,连结PA、PC、AC,设△ACP的面积为S.

(1)求直线AC对应的函数表达式(用含k的式子表示).

(2)当点P在直线AC的下方时,求S取得最大值时抛物线C1所对应的函数表达式.

(3)当k取不同的值时,直线AC、抛物线C1和点P、点B都随k的变化而变化,但点P始终在不变的抛物线(虚线)C2:y=ax2+bx上,求抛物线C2所对应的函数表达式.

(4)如图②,当点P在直线AC的下方时,过点P作x轴的平行线交C2于点F,过点F作y轴的平行线交C1于点E,当△PEF与△ACO的相似比为时,直接写出k的值.

【解答】解:(1)在y=(x+k)(x﹣3)中,

令y=0,可得A(3,0),B(﹣k,0),

令x=0,可得C(0,﹣3k),

设直线AC对应的函数表达式为:y=mx+n,

将A(3,0),C(0,﹣3k)代入得:

解得:

∴直线AC对应的函数表达式为:y=kx﹣3k;

(2)如图①,过点P作y轴的平行线交AC于点Q,交x轴于点M,

过C作CN⊥PM于N,

当x=2k时,y=(2k+k)(2k﹣3)=6k2﹣9k,

∵点P、Q分别在抛物线C1、直线AC上,

∴P(2k,6k2﹣9k)、Q(2k,2k2﹣3k),

∴PQ=9k﹣6k2﹣(3k﹣2k2)=﹣4k2+6k,

∴S△PAC=S△PQC+S△PQA=PQ•CN+PQ•AM=PQ•(CN+AM),

=PQ,

=(﹣4k2+6k),

=﹣6(k﹣)2+

∴当k=时,△PAC面积的最大值是

此时,C1:y=(x+)(x﹣3)=x2﹣

(3)∵点P在抛物线C1上,

∴P(2k,6k2﹣9k),

当k=1时,此时P(2,﹣3),当k=2时,P(4,6),

把(2,﹣3)和(4,6)代入抛物线(虚线)C2:y=ax2+bx上得:

解得:

∴抛物线C2所对应的函数表达式为:y=x2﹣x;

(4)如图②,由题意得:△ACO和△PEF都是直角三角形,且∠AOC=∠PFE=90°,

∵点P在直线AC的下方,横坐标为2k的点P在抛物线C1上,

∴P(2k,6k2﹣9k),且0<k<

∵A(3,0),C(0,﹣3k),

∴OA=3,OC=3K,

∴当△PEF与△ACO的相似比为时,存在两种情况:

①当△PEF∽△CAO时,

=

∴PF=k,EF=1,

∴E(3k,12k2﹣12k),

∵EF=1,

∴9k﹣6k2=12k﹣12k2+1,

6k2﹣3k﹣1=0,

k1=,k2=<0(舍),

②当△PEF∽△ACO时,

∴PF=1,EF=k,

∴E(2k+1,6k2﹣4k﹣2),

∴4k+2﹣6k2+k=9k﹣6k2,

k=

综上所述,k的值为

 

查看更多【长春数学试题】内容