全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学知识点 > 正文

1+e的x次方分之一的不定积分

2024-01-19 16:05:32文/陈宇航

1+e的x次方分之一的不定积分是:∫1/(1+e的x次)dx=∫e的-x次/(1+e的-x次)dx同乘e的-x次=-∫1/(1+e的-x次)d(1+e的-x次)=-ln(1+e的-x次)+C。

1+e的x次方分之一的不定积分

不定积分计算注意:

凑微分法在考研里面也叫第一类换元法,但是叫凑微分其实更能说明本质特征,因为它不是真正意义上的换元。

求导后得到的,只是原式的一部分,并不是全部!因此,这时候就需要凑了,即上下同时乘以(除以)相同的因式,用恒等变形的办法以达到凑微分的目的。

不定积分的意义:

设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x),于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。

由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

这表明G(x)与F(x)只差一个常数,因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。

查看更多【数学知识点】内容