系数是指代数式的单项式中的数字因数。单项式中所有字母的指数的和叫做它的次数。通常系数不为0,应为有理数。
系数的字面意思:有关系的数字。比如说代数式"3x",它表示一个常数3与未知数x的乘积,即表示3×x,等于x+x+x。“3x”代表一个数值,这个数值只与x有关系,是什么关系呢?“3”便是说明了关系——是3个它相加的和。所以,“系数”可以解释为“有多少个未知数(相加的和)。
在一项中,所含有的未知数的指数和称为这一项的次数。
不含未知数的项,称为常数项。例如:1,2,3,100等这样的数。常数的次数是0。
在多项式中含有字母的项,该项的整数部分称作是该项的系数,不含字母的项称作常数项。如多项式:4ab-5c+6d-7中,4、-5、6分别是含有字母的项ab、c、d的系数,而-7这项不含有字母,所以称作为常数项;
如式子中没有数字,系数的默认情况下是为1或-1。例:-x系数:-1;x系数:1。
1.有理数分为正有理数、零、负有理数、整数、分数;
2.在多项式中含有字母的项,该项的整数部分称作是该项的系数,不含字母的项称作常数项。如多项式:4ab-5c+6d-7中,4、-5、6分别是含有字母的项ab、c、d的系数,而-7这项不含有字母,所以称作为常数项;
3.如式子中没有数字,系数的默认情况下是为1或-1。例:-x 系数:-1;x系数:1;
4.次数指单项式中所有字母的指数的和;
5.分数的系数,例:-3xy÷2π的系数为-3÷2π ;
6.π是数字,不要误认为是字母。如3πm的系数是3π,次数是1。在算术中,如 3π+6+9,则结果为3π+15,π不需保留两位小数;
7.在单项式中,字母的系数默认为1。例:a的系数是1。
查看更多【数学知识点】内容首先化成一般式,构造函数第二站;判别式值若非负,曲线横轴有交点;a正开口它向上,大于零则取两边;代数式若小于零,解集交点数之间;方程若无实数...
近似数的定义在数学中是指与准确数相近的一个数,比准确数略多或略少些。一个近似数精确到哪一位,就是说保留从左边第一个不是0的数字起到精确的数位...
1:3坡度可用百分比法和度数法计算。用度数法计算时坡度等于高程差比路程,所以1:3的坡度约等于18°26'。
近似数口诀:四舍五入方法好,近似数来有法找;取到哪位看下位,再同5字作比较;是5大5前进1,小于5的全舍掉;等号换成约等号,使人一看就明白。
在数学中,若两角之和满足180°+2kπ(k∈Z),那么这两个角互为补角.其中一个角叫做另一个角的补角。
不等式的8条基本性质包括对称性、传递性、加法单调性,即同向不等式可加性、乘法单调性、同向正值不等式可乘性、正值不等式可乘方、正值不等式可开方...
用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连...
求不等式的解集可以先把各个不等式的解集表示在数轴上,观察公共部分。然后去括号,移项,合并同类项,系数化为一时要注意到底是除以了一个正数还是负...