同号得正,异号得负,并把绝对值相乘。任何数与零相乘,都得零。几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。几个数相乘,有一个因数为零,积就为零。几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。
(1)两数相乘,同号得正,异号得负,并把绝对值相乘。例:(-5)×(-3)=+(5x3)=15(-6)×4=-(6x4)=-24
(2)任何数与0相乘,积为0.例:0×1=0
(3)几个不等于0的数相乘,积的符号由负因数的个数决定。当负因数有奇数个数时,积为负数;当负因数有偶数个数时,积为正数。并把其绝对值相乘。例:(-10)×〔-5〕×(-0.1)×(-6)=积为正数,而(-4)×(-7)×(-25)=积为负数
(4)几个数相乘,有一个因数为0时,积为0.例:3×(-2)×0=0(5)乘积为一的两个有理数互为倒数(reciprocal)。例如,—3与—1/3,—3/8与—8/3
(5)0没有倒数
(6)如果有两个有理数的乘积为1,那么称其中一个数为另一个数的倒数(reciprocal),也称这两个有理数互为倒数。例如:3与3分之一互为倒数,负八分之三与负三分之八互为倒数。[同号得正,异号得负]。
查看更多【数学知识点】内容有理数乘法法则即两数相乘,同号得正,异号得负,并把绝对值相乘。任何一个数与0相乘,积仍为0。乘积是1的两个数互为倒数。
有理数的除法法则口诀:从左往右以此计算,有括号的先算括号内。同号的正,异号的负,并把绝对值相乘或相除。
分式是两个整式相除的商式,其中分子为被除数,分母为除数,分数线起除号(或括号)的作用。分式的分母中必须含有字母,而分子中可以含有字母,也可以...
分式的基本性质是分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字...
无理数的定义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。有理数的定义:是指两个整数的比。有理数是整数...
根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。约分的关键是确定分式中分子与分母的公因式。
初一上册地理重点知识点:①地球是一个不规则球体。②葡萄牙航海家麦哲伦率领的船队首次实现了人类环绕地球一周的航行。③地球表面积5。1亿平方千米...
有理数集包括所有有理数所构成的集合,用黑体字母Q表示。有理数集是实数集的子集。有理数集是一个无穷集,不存在最大值或最小值。