全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学知识点 > 正文

求极限的几种类型与方法初中

2024-01-04 17:00:23文/陈宇航

极限的类型一共有五种,分别是零比零型,无穷大比无穷大型,零乘无穷大型,一的无穷大次方型,还有定积分类型。具体的求解方法如下:1、零比零型,可用洛必达求解。2、无穷大比无穷大型,可用洛必达。

求极限的几种类型与方法初中

求极限的几种类型

极限的类型一共有五种,分别是零比零型,无穷大比无穷大型,零乘无穷大型,一的无穷大次方型,还有定积分类型。

具体的求解方法如下:

1、零比零型,可用洛必达求解。

2、无穷大比无穷大型,可用洛必达。

3、零乘无穷大型,把无穷或零放到分母上,化为零比零型或无穷大比无穷大型。

4、一的无穷大次方型,利用指数转换来求解。

5、定积分类型,可用洛必达求解。首先他的使用有严格的使用前提!必须是 X 趋近而不是N 趋近!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然 n 趋近是 x 趋近的一种情况而已,是必要条件(还有一点数列极限的 n 当然是趋近于正无穷的, 不可能是负无穷 !

求极限的方法

(1)分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;

(2)无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;

(3)运用两个特别极限;

(4)运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小。比无穷小,分子分母还必须是连续可导函数。

(5)用Mclaurin(麦克劳琳)级数展开,而国内普遍译为Taylor(泰勒)展开。

(6)等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。因为一要死背,不是值得推广的教学法;二是经常会出错,要特别小心。

(7)夹挤法。这不是普遍方法,因为不可能放大、缩小后的结果都一样。

(8)特殊情况下,化为积分计算。

查看更多【数学知识点】内容