实数的性质
1.封闭性:实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。
2.有序性:实数集是有序的,即任意两个实数、必定满足并且只满足下列三个关系之一ab。
3.传递性:实数大小具有传递性,即若a>d,且b>c,则有a>c。
4.与数轴对应:任一实数都对应与数轴上的唯一一个点;反之,数轴上的每一个点也都唯一的表示一个实数。于是,实数集与数轴上的点有着一一对应的关系。
查看更多【数学知识点】内容绝对值最小的实数是0。绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示。|b-a|或|a-b|表示数轴上表示a的点和表示b的...
平方为正数的是实数,平方为负数的是虚数。实数,是有理数和无理数的总称。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实...
实数(R)可以分为有理数(Q)和无理数,其中无理数就是无限不循环小数,有理数就是有限小数和无限循环小数;其中有理数又可以分为整数(Z)和分数...
无限不循环小数是无理数,有理数和无理数都是实数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限...
不是任何实数都有算数平方根,算术平方根只有大于或等于0的数才有。而实数包括正实数和负实数,负实数是没有平方根的。实数在数学上是指定义为与数轴...
π属于实数。因为π是无理数,实数包括无理数和有理数。圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存...
不是,负数没有算术平方根,因为负实数的算术平方根没有意义。实数在数学上是指定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数...
是实数。实数,是有理数和无理数的总称。其中无理数就是无限不循环小数和开根开不尽的数,有理数就包括无限循环小数、有限小数、整数。根号2是无理数...