在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。
常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。
可以看出,无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列。例如,数字π的十进制表示从3.141592653589793开始,但没有有限数字的数字可以精确地表示π,也不重复。必须终止或重复的有理数字的十进制扩展的证据不同于终止或重复的十进制扩展必须是有理数的证据,尽管基本而不冗长,但两种证明都需要一些工作。数学家通常不会把“终止或重复”作为有理数概念的定义。
无理数也可以通过非终止的连续分数来处理。
无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率、等。
而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比,如21/7等。
查看更多【数学知识点】内容π是圆周率,圆的周长与直径的比值。是一个在数学及物理学中普遍存在的数学常数。是无限不循环小数,约等于3.141592654。是精确计算圆周长...
属于实数集。实数集,包含所有有理数和无理数的集合,通常用大写字母R表示。π属于无理数,所以π属于实数。圆周率是圆的周长与直径的比值,一般用希...
π属于实数。因为π是无理数,实数包括无理数和有理数。圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存...
π为无理数,不可以在数轴上表示,数轴为一种特定几何图形。直线是由无数个点组成的集合,实数包括正实数、零、负实数也有无数个。正因为它们的这个共...
0是有理数。π不是有理数。有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
圆周率是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π不是分数。π不是有理数。
π不是有理数,因为根据有理数的定义得知,有理数是整数(正整数、0、负整数)和分数的统称,不包括π。π是无限不循环小数,属于无理数。
圆周率(π)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π不是分数。