全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学知识点 > 正文

数学初一上册知识点 七年级数学上册知识点总结

2024-06-23 09:53:59文/宋艳平

数学初一上册知识点:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

数学初一上册知识点 七年级数学上册知识点总结

数学初一上册知识点

1.数轴的概念

规定了原点,正方向,单位长度的直线叫做数轴。

注意:

⑴数轴是一条向两端无限延伸的直线;

⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;

⑶同一数轴上的单位长度要统一;

⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系

⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的'点不是一一对应关系。(如,数轴上的点π不是有理数)

3.利用数轴表示两数大小

⑴在数轴上数的大小比较,右边的数总比左边的数大;

⑵正数都大于0,负数都小于0,正数大于负数;

⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的(小)数

⑴最小的自然数是0,无的自然数;

⑵最小的正整数是1,无的正整数;

⑶的负整数是-1,无最小的负整数

5.a可以表示什么数

⑴a>0表示a是正数;反之,a是正数,则a>0;

⑵a<0表示a是负数;反之,a是负数,则a<0

⑶a=0表示a是0;反之,a是0,则a=0

初一上学期数学知识点归纳总结

1、列方程解应用题的一般步骤:

(1)将实际问题抽象成数学问题;

(2)分析问题中的已知量和未知量,找出等量关系;

(3)设未知数,列出方程;

(4)解方程;

(5)检验并作答。

2、一些实际问题中的规律和等量关系:

(1)几种常用的面积公式:

长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S=a2,a为边长,S为面积;

梯形面积公式:S=,a,b为上下底边长,h为梯形的高,S为梯形面积;

圆形的面积公式:,r为圆的半径,S为圆的面积;

三角形面积公式:,a为三角形的一边长,h为这一边上的高,S为三角形的面积。

(2)几种常用的周长公式:

长方形的周长:L=2(a+b),a,b为长方形的长和宽,L为周长。

正方形的周长:L=4a,a为正方形的边长,L为周长。

圆:L=2πr,r为半径,L为周长。

七年级数学上册知识点总结

(一)正负数

1、正数:大于0的数。

2、负数:小于0的数。

3、0即不是正数也不是负数。

4、正数大于0,负数小于0,正数大于负数。

(二)有理数

1、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整数之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

2、整数:正整数、0、负整数,统称整数。

3、分数:正分数、负分数。

(三)数轴

1、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

2、数轴的三要素:原点、正方向、单位长度。

3、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

4、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。

(四)有理数的加减法

1、先定符号,再算绝对值。

2、加法运算法则:同号相加,取相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

3、加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

4、加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5、 ab = a +(b) 减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)

1、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

2、乘积是1的两个数互为倒数。

3、乘法交换律:ab= ba

4、乘法结合律:(ab)c = a (b c)

5、乘法分配律:a(b +c)= a b+ ac

(六)有理数除法

1、先将除法化成乘法,然后定符号,最后求结果。

2、除以一个不等于0的数,等于乘这个数的倒数。

3、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

(七)乘方

1、求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)

2、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

(八)有理数的加减乘除混合运算法则

1、先乘方,再乘除,最后加减。

2、同级运算,从左到右进行。

3、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

(九)科学记数法、近似数、有效数字。

初一数学上册必背知识点有哪些

1、单项式:数或字母的积(如5n),单个的数或字母也是单项式。

(1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的'系数。(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。

(2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。

2、多项式

(1)概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。

(2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

(3)多项式的排列:

把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

在做多项式的排列的题时注意:

(1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符

看作是这一项的一部分,一起移动。

(2)有两个或两个以上字母的多项式,排列时,要注意:

a、先确认按照哪个字母的指数来排列。

b、确定按这个字母降幂排列,还是升幂排列。

3、整式:单项式和多项式统称为整式。

4、列代数式的几个注意事项

(1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写;

(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式;

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成3/a的形式;

(6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a 。

查看更多【数学知识点】内容