什么是导数
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数,通常是‘导函数’一词的缩写。一个可导函数的导函数,描述该可导函数在定义域上每一‘点’的变化‘趋势’。上面加引号的‘点’和‘趋势’,都需要从极限的角度去严格解释,因此这里也省略了。举个例子,函数f(x)=x的导数(导函数)是常量1,换句话说,f(x)的导数在定义域内不变。
查看更多【数学知识点】内容(1)函数f(x)在点x0处可导,知函数f(x)在点x0处连续(2)函数f(x)在点x0处可导,知函数f(x)在点x0存在切线。(3)函数f...
三角函数的导数有:(sinx)'=cosx、(cosx)'=-sinx、(tanx)'=sec²x=1+tan²x。三角函数是基本初等函数之...
tanx-x+c这个数的导数是tanx的平方。tan是正切的意思,在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠...
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。2、两个函数的乘积的导函数:一导乘二+一乘二导。3、两个函数的...
导数是描述函数变化的快慢,微分是描述函数变化的程度。导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一点附近的变化率。而微分是...
函数不连续,导数不存在。函数连续,也可能不存在。比如:函数y=|X|在X=0处,没有切线。因而在x=0处不可导,其余地方可导。也就是说,只有...
导数是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。一个函数存在导数时,称这个函数可导或者可微分。可...
导数,也叫导函数值。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。接下来分享常用导数公式,供参考。