全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学学习方法 > 正文

一道数学题难倒13亿人 如何学习

2023-10-01 12:32:05文/宋艳平

这道三十六军官问题不知道大家有没有听过,这是大数学家欧拉提出来的,题目如下:从不同的6个军团各选6种不同军阶的6名军官共36人,排成一个6行6列的方队,使得各行各列的6名军官恰好来自不同的军团而且军阶各不相同,应如何排这个方队?

一道数学题难倒13亿人 如何学习

一道数学题难倒13亿人

三十六军官问题

这道三十六军官问题不知道大家有没有听过,这是大数学家欧拉提出来的,题目如下:

从不同的6个军团各选6种不同军阶的6名军官共36人,排成一个6行6列的方队,使得各行各列的6名军官恰好来自不同的军团而且军阶各不相同,应如何排这个方队?

假如用(1,1)表示来自第一个军团具有第一种军阶的军官,用(1,2)表示来自第一个军团具有第二种军阶的军官,用(6,6)表示来自第六个军团具有第六种军阶的军官,则欧拉的问题就是如何将这36个数对排成方阵,使得每行每列的数无论从第一个数看还是从第二个数看,都恰好是由1、2、3、4、5、6组成。历史上称这个问题为三十六军官问题。

解决

当时三十六军官问题提出后,很长一段时间没有得到解决,直到20世纪初才被证明这样的方队是排不起来的。尽管很容易将三十六军官问题中的军团数和军阶数推广到一般的n的情况,而相应的满足条件的方队被称为n阶欧拉方。

欧拉曾猜测:对任何非负整数t,n=4t+2阶欧拉方都不存在。t=1时,这就是三十六军官问题,而t=2时,n=10,数学家们构造出了10阶欧拉方,这说明欧拉猜想不对。但到1960年,数学家们彻底解决了这个问题,证明了n=4t+2(t≥2)阶欧拉方都是存在的。

如何学好初中数学最有效的方法

扩宽解题思路

数学解题要想办法做到举一反三、勤思考,解答完一个题目,要想想有没有其他更加简便的方法,这样能够拓宽思路,这样在以后的做题过程中就会有更多的选择。当然,要有的放矢,不是所有问题都有多种方法的,采用目前学到的知识,能够快速解出就可以了。

必须要有错题本

说到错题本

不少同学都觉得自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。

错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。有很多学霸都是因为积极使用了错题本,而考取了高分。

查看更多【数学学习方法】内容