全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学知识点 > 正文

初中三年数学所有公式及定理

2023-04-29 11:07:11文/田丹鹤

点的定理:过两点有且只有一条直线;两点之间线段最短。角的定理:同角或等角的补角相等;同角或等角的余角相等。直线定理:过一点有且只有一条直线和已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短。

初中三年数学所有公式及定理

初中三年数学所有公式及定理1

1、点、线、角

点的定理:过两点有且只有一条直线;两点之间线段最短

角的定理:同角或等角的补角相等;同角或等角的余角相等

直线定理:过一点有且只有一条直线和已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短

2、几何平行

平行定理:经过直线外一点,有且只有一条直线与这条直线平行

推论:如果两条直线都和第三条直线平行,这两条直线也互相平行

证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行

两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补

初中三年数学所有公式及定理2

1、三角形内角定理

定理:三角形两边的和大于第三边

推论:三角形两边的差小于第三边

三角形内角和定理:三角形三个内角的和等于180°

2、全等三角形判定

定理:全等三角形的对应边、对应角相等

边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等;有两角和它们的夹边对应相等的两个三角形全等

推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

边边边定理(SSS):有三边对应相等的两个三角形全等

斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

初中三年数学所有公式及定理3

1、角的平分线

定理1:在角的平分线上的点到这个角的两边的距离相等

定理2:到一个角的两边的距离相同的点,在这个角的平分线上;角的平分线是到角的两边距离相等的所有点的集合

2、等腰三角形性质

等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边;等腰三角形顶角平分线、底边上的中线和底边上的高互相重合

等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

初中三年数学所有公式及定理4

相似三角形定理

相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

相似三角形判定定理:

1.两角对应相等,两三角形相似(ASA)

2.两边对应成比例且夹角相等,两三角形相似(SAS)

直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

判定定理3:

三边对应成比例,两三角形相似(SSS)

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

性质定理:

1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

2.相似三角形周长的比等于相似比

3.相似三角形面积的比等于相似比的平方

三角函数定理

任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

初中三年数学所有公式及定理5

圆的定理

定理:过不共线的三个点,可以作且只可以作一个圆

定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧

推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧

推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧

推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧

定理:

1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等

2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线

3.圆的切线垂直经过切点的半径

4.三角形的三个内角平分线交于一点,这点是三角形的内心

5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

6.圆的外切四边形的两组对边的和相等

7.如果四边形两组对边的和相等,那么它必有内切圆

8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等

比例性质定理

比例的基本性质

如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

合比性质

如果a/b=c/d,那么(a±b)/b=(c±d)/d

等比性质

如果a/b=c/d=…=m/n(b+d+…+n≠0),

那么(a+c+…+m)/(b+d+…+n)=a/b

查看更多【数学知识点】内容